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Abstract Contour segment (CS) is the fundamental ele-
ment of partial boundaries or edges in shapes and images. So
far, CS has been widely used in many applications, includ-
ing object detection/matching and open curve matching. To
increase thematching accuracy and efficiency, a variety ofCS
descriptors have been proposed. A CS descriptor is formed
by a chain of boundary or edge points and is able to encode
the geometric configuration of a CS. Because many different
CS descriptors exist, a structured overview and quantitative
evaluation are required in the context of CS matching. This
paper assesses 27 CS descriptors in a structured way. Firstly,
the analytical invariance properties of CS descriptors are
explored with respect to scaling, rotation and transformation.
Secondly, their distinctiveness is evaluated experimentally
on three datasets. Lastly, their computation complexity is
studied. Based on results, we find that both CS lengths and
matching algorithms affect the CS matching performance
while matching algorithms have higher affection. The results
also reveal that, with different combinations of CS descrip-
tors and matching algorithms, several requirements in terms
of matching speed and accuracy can be fulfilled. Further-
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more, a proper combination of CS descriptors can improve
the matching accuracy over the individuals.
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1 Introduction

A contour segment (CS) is a fragment of shape bound-
ary which is constructed by a chain of connected boundary
points. As shown in Fig. 1, compared to the shape boundary
which is defined as a circular sequence of boundary points, a
CS only describes the partial information of a shape bound-
ary. Each boundary point in the CS is called a CS point. The
main motivation for CS is that the connectedness of shape
boundary points is not ensured in practice due to the noise
affections [24] and manual operations [55]. Thus, viewing
CSs as local patches with any length provides more flexibil-
ity against boundary instabilities. Moreover, psychophysical
studies [49] show that we can recognise objects using CSs
alone. Therefore, CS is an important element for computer
vision tasks [42,49].

Benefit from these properties, CS plays a key role in
many different applications including object detection [45]
and matching [58]. This is because an object shape cannot
be ideally segmented from an image due to the background
clutter [24] and object overlapping (occlusion) [35]. To over-
come these, one typical method is to represent the object
boundaries and background using CSs [9]. Moreover, CS
is also commonly used for the application of sketch-based
object retrieval [55] since partial matching is only expected
between a sketched curve and an actual object boundary.
Not only in the specific applications, CS is also regarded as a
fundamental element of general applications like open curve
matching [39,58]. Similar to CS, open curve is a fragment
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Fig. 1 Shape boundary and a contour segment (the red line). a Shape,
b shape boundary, c contour segment (colour figure online)

of a shape boundary but with larger deformation and length
than CSs. Open curve matching aims to find similar parts
between two open curves and then calculate their similarity.
Essentially, open curve matching is employed by both object
detection and recognition applications since the lengths and
deformations of generated edges in an image are not uni-
formed. Thus, we use CS to represent the partial features of
an open curve, then search the similar parts by CS matching.
This strategy is employed for shape matching by searching
the similar parts among shape boundaries [6]. With these
motivations, in this paper, one of our experiments is applied
by the application of open curve matching.

In order to efficiently match CSs, proper CS descriptors
and matching algorithms are required. Such a descriptor is
required to encode the geometric configuration of CS points.
More specifically, among all CS points, we normally select
some sample points and generate CS descriptors by consid-
ering the geometrical relationship between those points. If
sample points are selected roughly, CS descriptors repre-
sent the coarse-grained CS features. If sample points are
selected densely, CS descriptors describe the fine-grained
CS features. For CS matching, traditional point-wise match-
ing algorithms like Hungarian [31], dynamic programming
(DP) [7] and dynamic time warping (DTW) [1] are normally
employed for searching the correspondences between sample
points. For some CS descriptors [19,58], due to the structure
of their feature vectors, vector-wise methods like correla-
tion [63], χ2-statistics [44], histogram intersection (HI) [46]
and Hellinger [10] are used to calculate distances.

Despite the extensive usage of CS [16,39,45,50,55,58]
and its extensions [17–20,38,55,57], most of existing works
only introduce CS descriptors without any comparison. In
addition, some survey papers focus on shape representa-
tion techniques [61,64], or only compare a handful of CS
descriptors in specific applications [29]. There is no paper
that integrally surveys and evaluates CS descriptors. In other
words, it is unclear how the discrimination power of each
descriptor is, and how similar or different it is to the other
descriptors. Furthermore, deep insights are needed regard-
ing the suitable combination between CS descriptors and
matching algorithms, and the computational efficiency of
each descriptor. Therefore, this paper studies the invariance
properties, matching performance and computation com-
plexity of 27 CS descriptors and their matching algorithms
in a structured way. Specifically, our evaluation is applied

by taking four properties into account. Firstly, we analyse
and compare a taxonomy of invariant properties. Secondly,
we theoretically analyse the computational complexity of
both feature generation and CS matching on 27 CS descrip-
tors. Thirdly, the matching performance of CS descriptors is
analysed experimentally using different combinations of CS
descriptors and matching algorithms via one general and two
application-oriented scenarios. Lastly, the runtime in the CS
matching experiment is evaluated and compared. With dis-
cussions and observations on the four properties described
above, we draw the recommendation for different application
scenarios by balancing the matching accuracy and speed.

The most significant scientific contributions of this paper
include: (1) we survey and evaluate the existing CS descrip-
tors in a structuredway. (2) In order to evaluateCSdescriptors
in different scenarios, we design and introduce three datasets
for CS matching, open curve matching and hand sketch-
ing matching. (3) Formed on evaluations, we recommend
the combinations of CS descriptors and matching algorithms
for meeting different requirements in terms of accuracy and
speed.

2 Contour segment descriptors

As shown in Table1, 27 CS descriptors are selected for the
evaluation in this paper. They are put into three groups,
“simple”, “signature-based” and “rich”, depending on struc-
tures of their feature vectors. Roughly speaking, a simple CS
descriptor is a scalar representing a global feature of a CS, a
signature-based descriptor is a vector characterising geomet-
ric relations among CS points, and a rich descriptor is a more
complex and structured representation of a CS. The evalu-
ated 27 CS descriptors are mainly selected from two sources:
(1) directly designed for CS representation in the literature,
including most rich CS descriptors ( f19– f25, f27). (2) Most
popular and originally designed for shape representation, but
can be used or modified into CS description, including sim-
ple, signature-based and some rich CS descriptors ( f1– f18,
f26).
Before moving to detailed explanations, let us define and

formulate a CS. We assume that it has the following restric-
tions: (1) with one pixel width, (2) with two endpoints, which
only have one neighbour point and (3) with no intersec-
tion point: except two endpoints, all points only have two
neighbour points. Formed on these restrictions, a CSC is rep-
resented as a sequence of CS points p1, p2, . . . , pN along
the boundary path. Here, a CS point pi (1 ≤ i ≤ N ) is
expressed as a point in the Cartesian coordinate system, that
is, [xi , yi ]. We set CSs to have the same number of points
for two reasons: first, it is easier for us to fairly evaluate
the performance of CS descriptors using the same matching
methods. Second, it also makes open curve matching easier
since open curves can be decomposed into multiple CSs with
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Evaluating contour segment descriptors 375

Table 1 Three types of CS
descriptors and their symbols
(Sym.)

Name Sym. Name Sym. Name Sym.

Area [43,61] f1 Comcoor [61] f10 Point Triangle [36] f19
Circularity [43,61] f2 Cendistance [64] f11 Contour Context [65] f20
Eccentricity [43] f3 Tangent [64] f12 Beam Angle [42] f21
Bending [62,64] f4 Curvature [64] f13 Partial Contour [45] f22
Rectangularity [43] f5 Area Function [64] f14 Opt Partial Contour [29] f23
LineRatio [43,62] f6 Triangle Area [2] f15 Chord Distribution [20] f24
Convexity [43] f7 Chord Length [25] f16 Length Direction [37] f25
Solidity [43] f8 Turning Angle [14] f17 Line Segment [19] f26
Dislength [58] f9 Height Function [56] f18 Sub-Box [58] f27

f1– f9, simple CS descriptors; f10– f17, signature-based CS descriptors; f18– f27, rich CS descriptors

the same number of points. Then, an open curve matching
task is accomplished by multiple CS matching tasks.

2.1 Simple CS descriptors

A simple CS descriptor is a scalar that represents a global
feature of a CS. CS descriptors in this group are nor-
mally generated by considering the global CS geometry. The
motivation of simple CS descriptors is that some practical
problems [43] only need simple and coarse-grained features
for fast calculations. Thus, it is desired to find descriptors that
are both simple and generally applicable. Moreover, comb-
ing descriptors should introduce a new perspective. Thus,
we survey and revise nine simple CS descriptors from shape
survey papers [61,64] and applications [43,62]. In general,
these descriptors are intuitive and simple, but usually can
only discriminate CS with large differences. Therefore, they
are not used as standalone descriptors but usually used as
filters to eliminate false hits or combined with other rich
descriptors.
Area As shown in Fig. 2b, the area descriptor [43,61] f1 is
calculated as the area As (dark grey area) between the straight
line (red dotted line) connecting theCSendpoints (red points)
and the CS itself. In order to ensure the scale invariance, f1
is normalised by the length of CS N , that is f1 = As/N .
Circularity Circularity [43,61] f2 illustrates how similar the
CSC is to a circle. As shown in Fig. 2c, a circularity f2 is cal-
culated as As/Ac where Ac denotes the area of the minimum
CS surrounding circle (light grey area).
Eccentricity Eccentricity [43] f3 can be uniquely defined as
the ratio of length of major axis to minor axis that cross each
other orthogonally in the middle of the CS. We first find the
middle point pc of the CS C (the red point in Fig. 2d), then
eccentricity is calculated as f3 = l1/ l2 where l1 and l2 are
the lengths of major axis and minor axis to the CS minimum
bounding rectangle on pc , respectively.
Bending Bending [62,64] f4 is defined by the average bend-
ing energy. It captures the degree of a CS bending energy. For
instance, the circle is the shape with the minimum bending

energy. Bending is calculated as f4 = mean(K (i)2), where
K (i) denotes the curvature of point pi (Fig. 2e).
Rectangularity Rectangularity [43] f5 presents how rect-
angular a CS is, i.e. how much the CS fills its minimum
bounding rectangle (Fig. 2f). Rectangularity is calculated as
f5 = As/(w · h) where w and h are the width and height of
the CS minimum bounding rectangle.
LineRatio LineRatio [43,62] f6 uses a straight line as a tem-
plate and illustrates how similar a CS is to the straight line
(Fig. 2g). LineRatio is calculated as f6 = h/N where h is
the height of the CS minimum bounding rectangle.
ConvexityConvexity [43] f7 is defined as the ratio of the con-
vex hull [3] over that of the CS length. Convexity captures
theminimal convex covering of aCS.A straightforwardmea-
sure for Convexity can be calculated as f7 = Ah/N where
Ah denotes the CS convex hull area (Fig. 2h).
Solidity As shown in Fig. 2i, solidity [43] f8 describes the
extent to which the CS is convex or concave and is defined
as As/Ah. Solidity is an indicator that captures the concave–
convex condition of a CS.
Dislength Dislength [58] f9 illustrates the skewness power
of a CS (Fig. 2j). It is defined by the ratio between distance
of endpoints l3 and the CS length.

2.2 Signature-based CS descriptors

CS signature is the modified version of shape signature that
represents a shape by a vector describing various spatial rela-
tions among shape boundary points [64]. Signature-based
descriptors can capture the perceptual features of CSs and
are often combined with some other feature extraction algo-
rithms like Fourier descriptors [4,13,28,30,54] and wavelet
descriptors [40,52,60]. The motivation of signature-based
CS descriptors is to represent a CS with a midterm order
of feature vector than the simple and rich CS descriptors.
Thus, signature-based CS descriptors could offer a proper
way for balancing the matching accuracy and speed. As
those descriptors have both local and global features of a
CS, both point-wise and vector-wise methods (Sect. 1) can
be applied for CS matching and it is unclear which one

123



376 C. Yang et al.

(a) (b) (c) (d) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

(t) (u) (v) (w) (x)

(o) (p) (q) (r) (s)

Fig. 2 Simple, signature-based and rich descriptors for a CS C . a CS
C, b Area f1, c Circularity f2, d Eccentricity f3, e Bending f4, f
Rectangularity f5, g LineRatio f6, h Convexity f7, i Solidity f8, j
DisLength f9, k Cendistance f11, l AreaFunction f14, m ChordLength

f16, n Turning Angle f17, o Height Function f18, p Point Triangle f19,
q Contour Context f20, r Beam Angle f21, s Partial Contour f22, t Opt
Partial Contour f23, u Chord Distribution f24, v Length Direction f25,
w Line Segment f26, x Sub Box f27

is more efficient. In such a case, we employ both match-
ing types for signature-based CS descriptor evaluation in
Sect. 4.

Comcoor Comcoor (Complex Coordinates) [61] descriptor
f10 is mainly designed for transforming a CS represented
by a two-dimensional sequence (sequence consisting of two-
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dimensional points) into one-dimensional sequence. Let pc
be the middle point for a CS p1, p2, . . . , pN . Complex coor-
dinates function is:

f i10 = [xi − xc] + [yi − yc]. (1)

where [xc, yc] is the coordinate of pc and [xi , yi ] is the
coordinate of the i th point in C , i = 1, 2, . . . , N . Finally,
f10 = [ f 110, f 210, . . . , f N10 ].
Cendistance Cendistance (Centroid Distance Function) [64]
descriptor f11 is the representation of centroid-based time
series. The main characteristics are simplicity and flexibil-
ity since the accuracy can be controlled by the density of
sample points. Similar to Comcoor, as shown in Fig. 2k, f11
is defined as [ f 111, . . . , f i11, . . . , f N11 ] where f i11 is the angle
between pc and the i th CS point pi .
Tangent Tangent (Tangent Angle Function) [64] descriptor
f12 is defined as follows:

f i12 = tan−1
(
yi − yi−w

xi − xi−w

)
, (2)

where pi = [xi , yi ] is the i th CS point, and w is a win-
dow for controlling the accuracy. In our experiment, we
set w = 5 and (i − w) = 1 if (i − w) <= 0. Finally,
f12 = [ f 112, f 212, . . . , f N12 ]. Since Tangent CS descriptor
requires a window for feature generation, it is sensitive to
noise. However, this is more flexible than most signature-
based CS descriptors since we can control its accuracy by
changing the size of the window.
Curvature Curvature [64] descriptor f13 is very important
for capturing salient perceptual characteristics. Superficially,
curvature descriptor is calculated as f13 = [K ′(1), . . . ,
K ′(N )] where K (i) is the curvature of the i th CS point pi
similar to bending ( f4). In order to ensure the scale invari-
ance, K (i) is normalised by the mean absolute curvature.
Area Function Area Function [64] descriptor f14 is calcu-
lated by the triangle area between the middle point pc and
two consecutive CS points pi and pi+1 (Fig. 2l). In other
words, f14 = [ f 114, . . . , f N14 ] where f i14 is the area of the
triangle consisting of pc, pi and pi+1. Area Function is sim-
ple and can be used to collect fine-grained features since the
distance between pi and pi+1 is small and can capture the
small deformations of a CS. Moreover, the coarse-grained
features are also preserved as we collect the whole areas
from ( pi , pi+1) to the fix point pc.
Triangle AreaDifferent fromArea Function, triangle area [2]
descriptor f15 is computed directly from area of triangles
formed by pi−ts , pi and pi+ts where i ∈ [1, N ] and ts ∈
[1, N

2 − 1]. For each point pi , the triangle area is formed by:

f i15 = 1

2
det

⎛
⎝xi−ts yi−ts 1

xi yi 1
xi+ts yi+ts 1

⎞
⎠. (3)

With this equation, when the CS path is traversed in the
clock-wise direction, positive, negative and zero values of
triangle area mean convex, concave and straight-line points,
respectively. Triangle area provides useful information like
the convexity/concavity at each CS point. Therefore, this
descriptor provides high discrimination capability. Compar-
ing to Area Function, triangle area is more flexible since the
gap between three points can be modified by varying their
positions.
Chord Length Chord Length [25] descriptor f16 is derived
by the distance between a CS point and its reference point.
As shown in Fig. 2m, the chord length f i16 of pi is its shortest
distance to theCSpoint p′

i so that pi p
′
i is perpendicular to the

tangent vector at pi . Finally, f16 = [ f 116, . . . , f N16 ]where f i16
is normalised by the CS length N for scale invariance. Chord
length descriptor is robust to fine-grained deformations since
chord lengths are calculated using different reference points
rather than only one middle point like Area Function. For
example, if the middle point of a CS is changed because of
deformation or noise, most chord lengths remain the same
since each CS point may have a different reference point for
calculating its chord length.
Turning Angle As shown in Fig. 2n, a Turning Angle [14]
f i17 represents the angle of � pi−1 pi pi+1 defined by pi and
its neighbouring points pi−1 and pi+1. The Turning Angle
descriptor f17 can be represented by the whole CS points
as a set of feature vectors: f17 = [ f 117, . . . , f N17 ]. Similar
to Area Function, Turning Angle captures the fine-grained
features of a CS by using adjacent points. However, it has
less ability for preserving coarse-grained deformation since
the generated turning angles are globally isolated. On the
contrary, area functions are not isolated since they are all
connected by the middle point of a CS.

2.3 Rich CS descriptors

Rich CS descriptors capture the CS geometrical features in
both fine- and coarse-grained levels. Compared to simple and
signature-based CS descriptors, the feature vector of rich
descriptors has more dimensions and varieties. Therefore,
richCSdescriptors carrymore informationof the originalCS.
However, considering the computational complexity, rich CS
descriptors require more runtime for feature generation as
the features are normally generated by considering the rela-
tionship between every CS sample points. Specifically, rich
descriptors f18– f25 are usually generated based on feature
vector Fi on each sample point pi for a CS. By collecting
Fi on every sample point (F1, F2, . . . , FN ), we can get the
descriptor for representing the CS C . In order to simplify the
description, we only introduce the way of Fi generation on
rich descriptors f18– f25. In contrast, rich descriptors f26 and
f27 have their own feature structures, so they are introduced
independently.
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Height Function As shown in Fig. 2o, a height function [56]
Fi is defined based on the distances of the other sample points
to its tangent line, i = 1, . . . , N . The motivation of this
descriptor ( f18) is to represent CS points by considering their
relations to all other sample points in the same direction.
Point Triangle Point Triangle [36] descriptor f19 is inspired
by Carlsson [51] in which they only consider qualitative
orientations of each triangle: oriented clock or counterclock-
wise. Point Triangle descriptor provides a full quantitative
description of each triangle. As shown in Fig. 2p, a Point Tri-
angle descriptor Fi is a histogram of all triangles spanned by
pi and all pairs of points pm, pn . In particular, Fi is the con-
catenation of triplets each of which represents a triangle and
consists of three values, angle � pm pi pn , distance pi pm and
distance pi pn . This leads to a significant increase in descrip-
tive power since both orientation and distance features are
captured in the Point Triangle.
Contour Context For each point pi , Contour Context descrip-
tor f20 [65] considers the N − 1 vectors obtained by
connecting pi to all other points. The key motivation is that
the distribution over relative positions of each CS point is a
robust, compact and highly discriminative descriptor. Simi-
lar to shape context [8], in order to capture the geometrical
information of pi , a log-polar histogram is defined (Fig. 2q)
by five sections on the radius and 12 sections on the angle.
Thereafter, a contour context Fi for pi can be represented as
a 60-dimensional feature vector.
Beam Angle The basic idea of Beam Angle [42] descriptor
f21 is to represent each CS point pi by a weighted Beam
Angle Histogram (BAH). This descriptor represents a CS
point using multiple angles with different weights. With this,
Beam Angle descriptor can mitigate the uncertainty in CS
representation since it down-weights the interactionof distant
CS points. Specifically, at CS point pi , the Beam Angle Fi
is subtended by lines ( pi+m, pi ) and ( pi , pi−m) (Fig. 2r),
where m = 1, . . . , N ′ and N ′ is determined experimentally.
Therefore, pi is represented by N ′ weighted angles.
Partial Contour Partial Contour [45] descriptor f22 is calcu-
lated by the relative orientations between lines that connect
the CS sampled points. As shown in Fig. 2s, for a CS point pi ,
its feature vector Fi is formed by multiple angles αim . In par-
ticular, each angle is constructed by a line connecting pi and
pm , and a line to a third point relative to the position of the
previous two points. This third point is chosen depending on
the position of the other two points to ensure that the selected
point is always inside the CS. This allows them to formulate
the descriptor as a self-containing descriptor of any of its
parts. The Partial Contour descriptor has several important
properties, such as rotation and translation invariance, cover-
ing both local and global characteristics, and partialmatching
based on self-containing.
Opt Partial Contour Opt Partial Contour [29] descriptor f23
analyses angles defined by lines connecting a reference point

(CS-dependent) and the CS points. Based on this, both fine-
and coarse-grained features can be captured since f23 con-
siders relative angles between CS points and the reference
point which is defined by the upper left corner of the CS sur-
rounding box (See Fig. 2t). For a CS point pi , Fi is formed
by the angles � pi pm p0, where pm is a CS point.
Chord Distribution A chord is a line joining two points of
a region boundary, and the distribution of chords’ lengths
and angles is often used as shape descriptor [15]. Chord
Distribution descriptor f24 [20] uses chords to exploit the
available point ordering information for the subsequent
order-preserving assignment matching. In comparison, the
contour context descriptor f20 loses all the ordering infor-
mation due to the histogram binning and does not consider
the influence of the local neighbourhood on single point
matches. As shown in Fig. 2u, for a CS point pi , a Chord
Distribution Fi is computed based on angles αim which
describe the relative spatial arrangement of the sampled
points. For a single CS, the angles are calculated over all
possible point combinations, yielding the descriptor matrix
f24.
Length Direction As shown in Fig. 2v, for a CS point pi ,
Length Direction descriptor f25 [37] consists of Fi repre-
senting both the length (Euclidean distance in the log space)
and direction (four quadrant inverse tangent) of the vector
from pi to other points in C . The length and direction fea-
tures are independently saved.
Line Segment Line Segment [19] descriptor f26 is gener-
ated based on straight-line segment statistics. As shown in
Fig. 2w, for each CS point, the descriptor considers a contin-
uous portion of the CS with the length equal to a pre-defined
percentage of theCS size. Then, the length of the straight-line
segment between a reference point and another CS points
is computed using the Euclidean distance. For the set of
straight-line segments, statistical movements (average and
standard deviation) are calculated. By performing this for dif-
ferent lengths of contour portions, a CSC is represented by a
feature vectorwhich describes theCS at different sizes. There
are several characteristics of this descriptor: (1) it is simple
and intuitive as it is directly generated based on connection
lines between CS points. (2) It preserves the coarse-grained
features hierarchically using different scales. (3) Built on the
feature vectors, the distance between CSs can be quickly cal-
culated by vector distance.
Sub-Box Sub-Box descriptor [58] f27 preserves the medium-
grained CS features by using the full- and sub-bounding
boxes. As shown in Fig. 2x, in order to generate sub-box
descriptor, a CS bounding box is partitioned into three sub-
boxes with the same height (h1 = h2 = h3). Then a
CS C is represented by an 11-dimensional feature vec-
tor including the CS length N , endpoint distance, area,
angles and height-to-width ratios of the full and the sub-
boxes.
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3 Contour segment matching

Here, we introduce the methods for calculating the distance
D(C1,C2) between two CSsC1 andC2. After that, we intro-
duce the open curve matching approach for our experiments.
For each CS descriptor, the matching method is assigned
based on theCS descriptor types. In particular, as each simple
descriptor is actually a single value, distances between them
can be directly computed. For a signature-based descriptor,
on the one hand, the feature values are computed from each
sample point. On the other hand, an N -dimensional feature
vector is generated by collecting all feature values. Thus, we
can use the point-wise methods with respect to sample points
and the vector-wise methods with respect to feature vectors.
A rich descriptor consists of “non-uniform” feature vectors
in the sense that, each dimension represents a completely
different information, that is, it has a significantly different
value range. Thus, we cannot directly use the aforementioned
matching methods. In such a case, we employ their original
distance methods to express the best ability of CS descrip-
tors. After that, three matching approaches are employed for
sample point matching.

3.1 CS matching: simple descriptors

Since the simple descriptors f1, f2, . . . , f9 are scalar, we
calculate the distance D(C1,C2) between two CSs, D(C1

and C2:

D(C1,C2) = | f1, j − f2, j |
f1, j + f2, j

, (4)

where f1, j and f2, j are the j th simple descriptors of C1 and
C2, respectively. Note that simple descriptor values signifi-
cantly vary dependingonCSs.Thus, it is needed tomake their
differences independent of their descriptor values. To this
end, Eq.4 is designed to normalise the difference between
two simple descriptor values.

3.2 CS matching: signature-based descriptors

There are two methods for calculating D(C1,C2) between
C1 and C2 represented by signature-based descriptors: point
matching and vector distance. Let f1, j = [ f 11, j , . . . , f N1, j ]
and f2, j = [ f 12, j , . . . , f N2, j ] be the j th signature-based CS
descriptors for C1 and C2, respectively.

With the point-wise methods, we first calculate the dif-
ferences d( f m1, j , f n2, j ) between f m1, j in f1, j and f n2, j in f2, j
(m, n = 1, 2, . . . , N ). Then, a matrix of differences between
all CS points in C1 and C2 is generated. In order to find an
optimum match of CS points between C1 and C2, we use
the matching algorithms like DTW [1], DP [7] and Hun-
garian [31] on the matrix. Specifically, in order to avoid the

brute-force approach [7] of the standard DTW algorithm,
we employ the FastDTW [47] for CS point matching. For
the DP, we employ the solution proposed by Sellers [48]
to reduce the time complexity of traditional approach [7].
Hungarian algorithm [31] solves the assignment problem in
a weighted bipartite graph. With this approach, the corre-
spondence between CS points is generated by minimising
the global cost between CS point distances. The resulting
distance values of the matched CS points can be denoted as
s1, . . . , sN and the similarity betweenC1 andC2 is calculated
as the mean value.

With the vector-wise methods, we directly calculate the
distance between f1, j and f2, j without considering any point
matching. In particular, we employ the following distance
measures: (1) correlation [63], (2) histogram intersection
(HI) [46], (3) χ2-statistics [44] and (4) Hellinger (or Bhat-
tacharyya Coefficient) [10]. These distance measures are
selected based on their simpleness and applicability eval-
uated in [27]. Since there are many other existing distance
measures, in Sect. 6, we will discuss their adoption as our
future work.

3.3 CS matching: rich descriptors

Since rich descriptors f18, . . . , f27 consist of non-uniform
feature vectors, they have their own ways of matching CS
points as well as calculating CS distances: (1) for Height
Function descriptor f18, to match two CSs C1 and C2, the
distance between any pair of points are computed by the
weighted difference of their height features [56]. Then, a
cost matrix is generated. Here, high weights are put on
CS points near to the centre to tolerate CS deformations.
Finally, a matching algorithm like Hungarian, DP or DTW
is applied on the cost matrix to get the similarity between
C1 and C2. (2) For the descriptors f19– f24, they are all
constructed by the histograms of CS points. Thus, a cost
matrix is obtained by computing the distance between any
pair of points using the histogram intersection. Then, the
overall similarity between C1 and C2 is calculated by apply-
ing a matching algorithm like Hungarian, DP or DTW to
the cost matrix. (3) For Length Direction descriptor f25, the
distance between C1 and C2 is calculated by the method
in which the distance and orientation matrices are fused
to get an affinity matrix that represents the similarities of
corresponding point pairs [37]. Then, the optimal corre-
spondence and overall similarity between C1 and C2 are
calculated with Hungarian, DP or DTW. (4) For Line Seg-
ment f26 and Sub-Box f27, both descriptors are organised
into vectors, so we can directly use the vector distance meth-
ods.

It should be noted that for some rich descriptors, e.g.
f18– f25, we can employ other vector-wise methods to cal-
culate the distance between CS points. Taking f19 as an
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example, instead of the histogram intersection method, the
χ2-statistics [44] method could also be used. However, we
will extend and assess this idea as a future work (Sect. 6) for
the following three reasons: (1) since each rich descriptor
has their correlated distance method in the original paper,
there is a high probability that we do not fully express the
best ability of those descriptors if we directly employ other
methods and ignore the original one. (2) Based on a cost
matrix, our target is to find an optimum match between CS
points. Using different vector-based methods only change
the range of dissimilarity values within the cost matrix. This
means that this matrix is still representative and the CS point
correspondences mostly remain the same [12]. (3) Theo-
retically, the overall similarity between rich descriptors is
the accumulation of elementary similarities computed by
a vector-wise method, so even if some of elementary sim-
ilarities are not the most accurate one, such errors could
be mitigated in the overall similarity [32]. So, we believe
that even if a more accurate vector-wise method is used,
the overall similarity between rich descriptors is not so
affected.

3.4 Open curve matching

Given two open curves C ′
1 and C ′

2 with size N1 and N2,
respectively, searching similar parts between C ′

1 and C ′
2 is

equivalent to finding two CSs C1 and C2 with size N start-
ing at the curve point C ′

1(m) and C ′
2(n) which yield the

smallest distance D(C1,C2), m ≤ N1, n ≤ N2, N ≤
min(N1, N2) (Fig. 3a). Therefore, the problem is reduced to
search the proper (m, n, N ) combination which minimises
the CS distance [20]. Note that the similarity between C1

in C ′
1 and C2 in C ′

2 depends on their length N . In other
words, a smaller N often leads to a higher similarity. To
avoid this undesirable effect of N , the Pareto-framework [11,
20] is employed for quantitative interpretation of partial
similarity. Pareto-framework illustrates a way to select a
multi-constrained path that can meet the optimal require-
ments.

As shown in Fig. 3b, we define two quantities: the par-
tiality λ(Ct

1,C
t
2) which describes the length of the CS (the

higher the value the smaller the CS), and the distance
D(Ct

1,C
t
2) which measures the dissimilarity. A Pareto opti-

mum is defined by Φ(Ct
1,C

t
2) which is a pair of partiality

and dissimilarity values that fulfil the criterion of the lowest
dissimilarity for the given partiality. Finally, to achieve a sim-
ilarity value between C ′

1 and C ′
2, the so-called Salukwadze

distance is employed which measures the minimum distance
from the origin (0, 0) to the point on the Pareto optimum.
The Salukwadze distance is then returned as the open curve
similarity value.
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Fig. 3 Open curve matching and the open curve similarity method. a
Open curve matching using CSs (green lines), b Salukwadze distance
(the red line) (colour figure online)

4 Experimental design

This section outlines our experimental design and setup to
evaluate CS descriptors. As described in Sect. 1, our evalua-
tion is applied by taking four factors into account: invariant
properties, computational complexity (theoretical),matching
performance and runtime. With these factors, we can make
fair comparisons regarding 27 CS descriptors, their combi-
nations and matching algorithms. In general, this evaluation
has the following two advantages: (1) it is possible for us
to recommend the best combinations of CS descriptors and
matching algorithms for different scenarios. (2) It is easier for
us to explore a proper way how to improve the CS matching
performance. Both advantages are verified in Sect. 5.4.

4.1 Datasets

To the best of our knowledge, there are no suitable datasets
for evaluating the performance of CS descriptors. This is
because in most existing CS-related applications [14,29,36,
42,45,56,65], researchers propose CS descriptors only for
their own specific scenarios. Moreover, we cannot directly
employ the existing datasets [19,20,37,58] for CS evaluation
since they contain only images or shapes rather than CS.
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Fig. 4 Sample sketches in the sketching CS dataset

Thus, we have designed and collected three datasets for our
experiments.
MPEG7CSMPEG7 [33] dataset is a standard and commonly
used shape dataset for evaluating shape matching and classi-
fication. The total number of images in the MPEG7 database
is 1400: 70 classes of various shapes, each class with 20
images. We create the MPEG7 CS dataset using its shape
contours. For the shapes from the same class, we first extract
their contours and then manually remove the same part from
contours. Finally, the MPEG7 CS dataset is generated with
1400 CSs. For easy and fair performance evaluation of CS
descriptors, the CSs we created have the same number of
CS points. With this property, this dataset is also used for
comparing the runtime between CS descriptors.
ETHZ CS ETHZ [23] is a dataset for testing object class
detection algorithms. It contains 255 test images and fea-
tures five diverse shape-based classes (apple logos, bottles,
giraffes, mugs and swans). Based on the shapes from ground
truth, we manually generate the following open curves by
keeping their contour parts in the parentheses: 44 open curves
for apple logos (the right half part), 55 open curves for bottles
(the right half part), 91 open curves for giraffes (the upper
neck part), 48 open curves for mugs (the right half part with
handle) and 32 open curves for swans (the upper half part
with head). In total, there are 271 open curves. This dataset
is used for evaluating the open curve matching.
Sketching CS This database is collected by ourselves includ-
ing 18 open curves of sketches which are commonly used for
the application of sketch-based object retrieval [21]. We first
collect images showing sketches drawn on a white board (see
Fig. 4). After that, all sketches are segmented and processed
into open curves using the methods introduced in [5,41].
This dataset is used for evaluating the difference between CS
descriptors and human perception for sketching matching.

4.2 Experiment types

Accurate matching requires effective CS descriptors to find
perceptually similar curves from a database, irrespective
of their rotations, translations and scales. A desirable CS
descriptor should have stable performance on different types
of datasets. Since eachCS descriptor andmatching algorithm

are different and have different inherent difficulty to apply,
it is reasonable to evaluate both computational complexity
(theoretical and real runtime) and matching performance for
the purpose of recommendation. Considering these require-
ments, we establish three types of experiments.

4.2.1 Experiment 1: invariance properties

Descriptors are often classified according to their invariance
levels to certain geometrical transformations. We mainly
assess three invariance properties of eachCS descriptor: rota-
tion, scaling and translation invariances. Rotation and scaling
invariances mean that the CS features remain the same even
when the CS is rotated and rescaled. Translation invariance
means that two CSs can still be correctly matched even when
everyCSpoint ismoved into a constant distance in a specified
direction.

4.2.2 Experiment 2: matching performance

As illustrated in Table2, we evaluate descriptors under mul-
tiple settings. For all descriptors, we generate their features
using four sampling densities for selecting sample points
from a CS: L1 = 25%, L2 = 50%, L3 = 75% and L4 =
100%. Based on this strategy, we aim to check the influence
of sample point density to the CS matching performance.
With different combinations of distance functions, matching
algorithms and CS lengths (sampling densities), the experi-
ments are conducted on the proposed three datasets:
MPEG7 CSWe use this dataset to evaluate the CS matching
performance in a retrieval scenario. We employ the so-called
bulls-eye score [33] as an evaluation measure. Given a query
CS, we retrieve the 40 most similar CSs from the database
and count the number of CSs belonging to the same class as
the query. The bulls-eye score is the ratio of the total number
of correctly matched CSs to the number of all the possible
matches (which is 20 × 1400). Thus, the best score is 100
percent.
ETHZ CS The experiment on this dataset aims to evaluate
the open curve matching performances using different CS
descriptors. We conduct an open curve retrieval scenario
using the method introduced in Sect. 3.4. Specifically, we
use each of 271 curves as a query and retrieve the 100 most
similar curves from the whole dataset. The final evaluation
is based on F1 score which is averaged over curves in each
class [22]. For example, since there are 44 open curves in
the Apple logo class, the F1 score for this class is calculated
by taking the average of F1 scores obtained using each of 44
open curve as a query.
Sketching CS Sketching CS dataset is used for evaluating the
matching performance based on CS descriptors with respect
to human perception. To implement this, we first collect the
ground truth by carrying out an online questionnaire for
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Table 2 Experiment settings for evaluating the matching performance of CS descriptors. L1, L2, L3 and L4 denote the sampling densities that are
used for generating CS descriptors. NULL means this part is not considered in our experiments

Descriptors Distance functions Matching Lengths

Simple ( f1– f9) Difference value NULL L1, L2 L3, L4

Signature ( f10– f17) Difference value (1) DTW (2) DP (3)
Hungarian

L1, L2 L3, L4

(1) Correlation, (2) HI, (3) χ2-statistics, (4) Hellinger NULL

Rich ( f18– f27) f18– f25 Proposed distances (1) DTW (2) DP (3)
Hungarian

L1, L2 L3, L4

f26, f27 (1) Correlation, (2) HI,
(3) χ2-statistics, (4)
Hellinger

NULL

selecting the most similar sketches to each query. Given a
query sketch, we retrieve the most similar sketch and exam-
ine whether it is the most voted sketch by humans. Then the
accuracy is calculated based on the ratio between the number
of matched sketches and the total number of sketches.

4.2.3 Experiment 3: computational complexity

We examine the computation complexity of each CS descrip-
tor in terms of the time complexity analysis and the real
runtime. We theoretically analyse the computational time
complexity for the generation and matching of each CS
descriptors [26]. The real runtime is evaluated based on
the full retrieval time of 1400 queries on the MPEG7 CS
dataset.

4.3 Experimental environment

The experiments in this paper are delivered on two plat-
forms: cluster and laptop. Feature generation and full object
retrieval experiments are accomplished on Horus, a cluster
provided by the University of Siegen, which includes 136
nodes, each consisting of 2 Intel Xeon X5650 with 2.66
GHz and 48 GB memory. This enables us to efficiently
finish our massive experiments. In order to fairly compare
the runtime of each CS descriptor, the runtime estimation
experiments are finished on a laptop with Inter Core i7 2.2
GHz CPU, 8.00 GB memory and 64-bit Windows 8.1 OS.
All methods in our experiment are implemented in MAT-
LAB.

5 Results

This section presents results in the experimental settings
defined in Sect. 4.

Table 3 Invariance properties of different CS descriptors (Des.)

Simple CS Signature-based CS Rich CS

Des. SI RI TI Des. SI RI TI Des. SI RI TI

f1 + + + f10 − − − f18 + + +
f2 + + + f11 − + + f19 + + +
f3 + + + f12 + + + f20 + − +
f4 + + + f13 + + + f21 + + +
f5 + + + f14 − +∗ + f22 + + +
f6 + + + f15 − + + f23 + + +
f7 + + + f16 + + + f24 + + +
f8 + + + f17 + + + f25 + + +
f9 + + + f26 + + +

f27 + + +
SI, RI and TI denote the scale invariance, rotation invariance and trans-
lation invariance. The existence and lack of an invariance are indicated
with ‘+’ and ‘−’, respectively. Regarding +∗ of f14, if the sampling is
dense enough, then it is rotation invariant, and vice versa

5.1 Experiment 1: invariance properties

Table3 illustrates the theoretical invariance properties of
different CS descriptors. Firstly, all the CS descriptors are
invariant to translation of CSs, except for Comcoor ( f10)
which is represented by coordinates of CS points ( f10 is
also neither scaling nor rotation invariant). Secondly, we can
clearly observe that all the simple CS descriptors are invari-
ant to rotation since they are generated by only considering
the overall feature of a CS. Moreover, normalisation pro-
cess can ensure the scaling invariance of simple descriptors.
Thirdly, some signature-based descriptors, such as the Area
Function ( f14) and Triangle Area ( f15), do not perform well
for scaled CSs. In practice, we can normalise them by the
CS length. These descriptors thereby become scale invariant.
Lastly, except Contour Context ( f20), all the rich descriptors
comply with the three invariance properties. In practice, the
rotation property of Contour Context descriptor can be pre-
served by the preprocessing method introduced in [58].
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5.2 Experiment 2: matching performance

In this section, we report the detailed performance of each
combination on three datasets.

5.2.1 Evaluation on MPEG7 CS dataset

Table4 illustrates the CS retrieval results on MPEG7 CS
dataset using simple CS descriptors. We can see that Eccen-

Table 4 CS matching results
(%) using Simple CS descriptors
(Des.) on MPEG7 CS dataset

Des. L1 L2 L3 L4

f1 3.7 3.7 3.7 3.7

f2 3.7 3.7 3.7 3.7

f3 22.3 22.8 22.8 22.8

f4 22.9 24.0 24.1 23.4

f5 22.3 22.8 22.8 22.8

f6 18.7 18.9 18.9 18.9

f7 16.6 15.9 15.7 16.0

f8 3.7 3.7 3.7 3.7

f9 18.7 18.9 18.9 18.9

Bold values indicate the results
with outstanding matching per-
formance

tricity ( f3),Bending ( f4) andRectangularity ( f5) outperform
the other descriptors in which Bending ( f4) achieves the best
performance on MPEG7 CS dataset. Moreover, considering
the performance on different lengths, we can see that for each
simple descriptor, the scores are almost the same. Therefore,
all the simple CS descriptors are robust to CS length changes.
The rationale behind this is that simple CS descriptors are
calculated by considering only global coarse-grained CS fea-
tures. Even if some fine-grained features get lost because of
small number of sample points, the global features remain
the same.

For the signature-based CS descriptors on MPEG7 CS
dataset, in Table5, Comcoor ( f10) with Hungarian match-
ing method achieves the best bulls-eye score. In Table6,
both Comcoor ( f10) and Cendistance ( f11) with Hellinger
distance method obtain the best score. Among all results,
Comcoor ( f10) with Hungarian matching method achieves
the best performance (64.4% bulls-eye score). We can
observe that the CS matching performance is enhanced and
damaged dramatically if the matching algorithms or vector
distancemethods are changed.Moreover, formost signature-
based CS descriptors, CS retrieval using point matching
methods performsmuch better than the vector distancemeth-
ods.

Table 5 CS matching results
(%) with signature CS
descriptors (Des.) using point
matching methods on MPEG7
CS Dataset

Des. DTW DP Hungarian

L1 L2 L3 L4 L1 L2 L3 L4 L1 L2 L3 L4

f10 62.1 62.3 62.3 62.4 50.0 49.9 50.6 50.9 63.3 64.1 64.2 64.4

f11 60.4 61.6 61.8 61.8 58.1 60.7 61.1 61.4 48.0 48.3 48.3 48.3

f12 54.5 55.9 60.0 61.4 54.9 55.7 59.6 60.8 51.1 51.4 50.0 49.8

f13 50.3 52.8 54.8 55.9 49.3 52.1 54.2 55.0 46.0 48.9 49.6 48.9

f14 55.0 57.7 57.7 59.4 50.8 54.5 53.7 56.4 41.9 43.6 38.6 42.4

f15 58.3 59.6 60.0 59.9 53.8 55.7 56.3 56.6 49.0 49.4 49.6 49.7

f16 3.2 2.9 2.9 2.9 3.3 3.0 2.9 2.9 3.3 2.9 2.9 2.9

f17 15.4 14.5 12.4 10.8 41.1 40.3 36.3 32.4 38.5 39.9 39.9 40.6

Bold values indicate the results with outstanding matching performance

Table 6 CS matching results (%) with signature CS descriptors (Des.) using vector distance methods on MPEG7 CS dataset

Des. Correlation HI χ2-statistics Hellinger

L1 L2 L3 L4 L1 L2 L3 L4 L1 L2 L3 L4 L1 L2 L3 L4

f10 8.2 7.1 7.1 6.9 13.5 14.0 14.5 14.3 55.7 55.8 56.5 56.6 63.7 63.6 63.7 63.5

f11 5.6 5.6 5.6 5.5 5.5 5.4 5.4 5.4 63.0 62.7 62.8 62.6 63.7 63.6 63.7 63.5

f12 5.9 5.8 5.9 5.9 7.1 7.0 6.8 6.6 44.2 47.4 50.0 49.4 42.7 41.8 44.8 43.7

f13 6.0 6.3 6.3 6.2 6.0 8.7 14.0 19.0 35.1 20.6 16.3 12.2 55.3 52.6 49.6 45.7

f14 5.6 5.6 6.2 5.6 5.1 5.1 5.1 5.1 54.4 54.8 54.8 54.3 49.7 49.2 47.7 46.3

f15 5.8 5.9 5.7 5.6 5.5 5.5 5.5 5.7 36.2 34.5 35.3 32.1 51.1 51.8 51.9 51.3

f16 3.3 3.0 2.9 2.9 2.9 2.9 2.9 2.9 3.2 2.9 2.9 2.9 2.9 2.9 2.9 2.9

f17 44.6 39.5 33.0 27.3 48.9 37.5 28.0 24.7 0.07 0.15 0.17 0.18 42.0 30.4 22.3 18.1

Bold values indicate the results with outstanding matching performance
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Table 7 CS matching results
(%) using rich CS descriptors
(Des.) and point matching
methods on MPEG7 CS dataset

Des. DTW DP Hungarian

L1 L2 L3 L4 L1 L2 L3 L4 L1 L2 L3 L4

f18 64.9 64.7 63.7 63.4 70.8 74.8 76.2 76.9 62.9 70.7 72.7 74.0

f19 40.9 39.0 36.9 35.8 68.5 69.5 70.3 70.5 69.8 70.1 70.4 70.3

f20 64.2 64.5 64.5 64.5 62.4 63.9 64.2 64.4 66.2 67.7 68.1 68.4

f21 72.8 75.1 74.6 73.6 73.1 75.1 75.3 73.8 79.6 79.6 77.4 73.9

f22 64.6 64.6 64.8 64.4 69.2 73.3 76.6 77.4 64.8 66.4 67.2 66.5

f23 57.6 60.1 61.0 61.2 48.8 52.6 54.2 54.2 47.4 51.5 53.4 53.5

f24 66.3 66.0 65.9 65.3 70.6 73.8 76.5 77.3 69.4 72.8 74.3 75.0

f25 64.2 64.6 64.7 64.8 64.1 64.3 64.3 64.4 64.1 64.3 64.4 64.4

Bold values indicate the results with outstanding matching performance

Table 8 CS matching results (%) using rich descriptors (Des.) and vector distance methods on MPEG7 CS dataset

Des. Correlation HI χ2-Statistics Hellinger

L1 L2 L3 L4 L1 L2 L3 L4 L1 L2 L3 L4 L1 L2 L3 L4

f26 70.8 70.7 70.5 70.3 70.0 71.0 71.2 71.2 72.7 73.2 73.3 73.3 74.5 74.8 74.8 74.8

f27 5.8 5.9 5.7 5.6 5.5 5.5 5.5 5.7 36.2 34.5 35.3 32.1 51.1 51.8 51.9 51.3

Tables7 and8 illustrate theCS retrieval performance using
rich CS descriptors. Among all rich descriptors, BeamAngle
( f21) achieves promising results in all three matching meth-
ods, in whichHungarianmethod yields the best score (79.6%
bulls-eye). For most rich descriptors ( f18– f26), they are rela-
tively robust to theCS length andmatching algorithmchange.
However, the performance of Sub-Box ( f27) significantly
relies on the vector distance methods in which the Hellinger
method outperforms the other vector distance methods. One
main reason is that feature values in an 11-dimensional Sub-
Box descriptor are significantly varied. Hellingermethod can
handle biased value distributions over dimensions while the
other distancemethods are easily affected by large values. As
Sub-Box descriptor only captures the medium-grained fea-
tures, its matching accuracies are worse than Line Segment
( f26) descriptor which preserves the fine-grained features.

Comparing the performance of three types of CS descrip-
tors in MPEG7 CS dataset, we can draw the following
observations: (1) most rich descriptors have a better per-
formance than the signature-based descriptors. (2) Most
signature-based CS descriptors outperform the simple CS
descriptors. (3) For most signature-based CS descriptors,
point matching strategy performs better than the vector dis-
tance strategy.

5.2.2 Evaluation on ETHZ CS dataset

Table9 shows matching results (F1 score) of simple CS
descriptors. As seen from this table, Eccentricity ( f3) and
Rectangularity ( f5) outperform the other descriptors (68.4).
Moreover, considering the performance on different lengths,

Table 9 Open curve matching
results (F1 score) using simple
CS descriptors (Des.) on ETHZ
CS dataset

Des. L1 L2 L3 L4

f1 42.5 42.6 42.7 42.6

f2 54.3 54.6 54.5 54.5

f3 66.3 66.4 66.4 66.4

f4 60.3 61.1 61.2 61.7

f5 66.3 66.4 66.4 66.4

f6 65.7 65.7 65.7 65.7

f7 46.2 46.1 44.7 45.2

f8 48.2 48.2 48.3 48.3

f9 65.7 65.7 65.7 65.7

Bold values indicate the results
with outstanding matching per-
formance

like MPEG7 CS dataset, all simple CS descriptors are robust
to CS length change.

For the signature-based CS descriptors, as shown in
Tables10 and 11, we can clearly observe that for both point
matching and vector distance strategies, matching perfor-
mances are highly related to the matching methods. For two
strategies, point matching methods perform better than the
vector distance methods. Specifically, Tangent ( f12) with
both DTW and DP and Comcoor ( f10) with χ2-statistics
achieve the best performance in two strategies, respectively.
However, considering their best F1 scores, f12 and f10
are very close to each other though f12 is slightly bet-
ter.

For the rich CS descriptors, similar to signature-based
descriptors, matching algorithms have big influences on F1
scores (Tables12, 13). Compared to other CS rich descrip-
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Table 10 Open curve matching
results (F1 score) with signature
CS descriptors (Des.) using
point matching on ETHZ CS
dataset

Des. DTW DP Hungarian

L1 L2 L3 L4 L1 L2 L3 L4 L1 L2 L3 L4

f10 65.3 65.5 65.5 65.5 43.5 43.3 43.4 43.3 59.3 61.6 61.6 61.6

f11 40.3 40.3 40.4 40.4 40.1 40.1 40.2 40.3 37.9 37.6 37.8 37.6

f12 66.1 67.5 66.8 67.4 66.1 66.5 66.2 66.4 65.5 65.2 65.9 66.5

f13 59.8 61.9 58.6 55.5 58.2 56.1 53.9 51.7 58.1 55.3 40.8 50.6

f14 41.1 40.0 41.9 39.4 38.8 38.1 40.1 38.0 40.6 40.9 38.3 40.2

f15 47.8 47.5 47.5 47.1 40.8 40.4 40.4 40.0 43.0 43.1 43.2 43.2

f16 28.2 27.6 25.4 25.5 28.1 27.6 25.5 25.5 28.1 27.5 25.4 25.5

f17 30.2 27.5 29.0 28.3 35.9 33.2 33.5 34.6 40.1 36.6 37.5 38.5

Bold values indicate the results with outstanding matching performance

Table 11 Open curve matching results (F1 score) with signature CS descriptors (Des.) using vector distance on ETHZ CS dataset

Des. Correlation HI χ2-Statistics Hellinger

L1 L2 L3 L4 L1 L2 L3 L4 L1 L2 L3 L4 L1 L2 L3 L4

f10 61.8 62.5 62.3 62.6 37.0 34.5 35.4 33.7 67.1 67.1 66.2 66.1 62.3 62.2 62.1 61.6

f11 7.3 7.6 7.6 7.6 21.1 21.4 21.2 21.3 43.6 43.4 43.5 43.5 62.3 62.3 62.1 61.6

f12 14.6 17.4 16.3 16.2 5.4 6.8 7.0 7.4 63.9 62.3 62.2 62.2 54.9 49.9 49.8 48.7

f13 6.0 6.6 8.5 9.8 57.0 37.5 15.4 13.1 58.8 51.9 42.5 37.9 66.3 68.1 64.4 61.9

f14 5.5 5.8 4.4 6.9 17.4 17.4 17.5 17.8 47.5 47.3 47.0 46.6 61.7 59.8 59.6 59.5

f15 11.3 11.7 11.3 10.6 34.9 34.1 34.4 33.7 50.1 49.1 49.1 48.9 54.6 55.0 55.0 56.1

f16 28.0 27.1 25.4 25.6 24.6 24.6 24.7 24.7 27.6 27.5 25.4 25.5 23.9 24.5 24.8 24.8

f17 43.1 33.5 33.6 38.0 45.3 37.8 39.2 39.4 25.3 20.0 20.5 27.5 43.6 35.1 32.3 32.0

Bold values indicate the results with outstanding matching performance

Table 12 Open curve matching
results (F1 score) with rich CS
descriptors (Des.) and point
matching methods on ETHZ CS
dataset

Des. DTW DP Hungarian

L1 L2 L3 L4 L1 L2 L3 L4 L1 L2 L3 L4

f18 53.5 52.9 52.4 51.6 60.3 61.0 61.0 60.7 61.2 61.7 61.7 61.7

f19 56.8 54.5 54.3 54.2 66.6 65.7 65.4 65.3 66.2 65.4 65.2 65.3

f20 54.4 54.3 54.3 54.3 65.3 65.3 64.9 64.9 64.2 64.2 64.2 64.2

f21 59.4 54.2 49.1 46.4 53.9 48.7 44.8 42.6 57.1 52.6 49.0 46.3

f22 53.5 52.4 52.1 51.6 60.4 60.7 60.6 60.5 58.2 57.0 56.4 56.2

f23 63.3 63.2 63.2 63.3 40.0 37.9 37.3 37.2 40.9 38.7 38.1 37.9

f24 54.0 52.8 52.2 51.8 61.2 61.5 61.6 61.6 60.7 61.0 61.2 61.3

f25 53.0 53.1 53.1 53.0 63.4 63.4 63.4 63.4 52.8 52.8 52.9 52.8

Bold values indicate the results with outstanding matching performance

tors, Point Triangle ( f19), Contour Context ( f20) and Length
Direction ( f25) are stable for CS length change and also have
goodmatching performance (more than 60 F1 score). Among
all these descriptors, Point Triangle ( f19) with dynamic pro-
gramming achieves the best performance (66.6 F1 score). For
Line Segment ( f26) and Sub-Box ( f27) descriptors (Table13)
which are using the vector distance methods, both of their
matching performances are not as good as Point Triangle
( f19) with dynamic programming.

Comparing the performance of open curvematching using
simple, signature-based and richCS descriptors on ETHZCS

dataset, we can draw the following observations: (1) most of
rich CS descriptors outperform signature-based CS descrip-
tors. (2)Most signature-basedCS descriptors performs better
than the simple CS descriptors. (3) For most signature-based
CS descriptors, point matching strategy performs better than
the vector distance strategy for open curvematching. (4)Con-
sideringCSdescriptorswith the best performance inTables4,
5, 6, 7, 8, 9, 10, 11, 12, 13, we can observe that the F1 scores
of the best performance in those tables are close to each
other. The main reason is that for open curve matching tasks,
the influence of a individual descriptor is relatively reduced
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Table 13 Open curve matching results (F1 score) with Rich CS descriptors (Des.) and vector distance methods on ETHZ CS dataset

Des. Correlation HI χ2-statistics Hellinger

L1 L2 L3 L4 L1 L2 L3 L4 L1 L2 L3 L4 L1 L2 L3 L4

f26 51.3 51.0 51.3 51.2 43.2 43.2 43.5 43.2 38.2 38.2 38.3 38.2 56.7 56.4 56.7 56.5

f27 7.2 5.0 4.5 4.6 3.5 3.0 3.0 3.1 63.7 66.1 66.5 66.0 64.5 65.8 66.0 65.8

because the open curve similarity value is calculated based
on the statistics of plentiful CS lengths and distances. More-
over, we can also observe that for the most CS descriptors, if
one has good performance for CS matching in the MPEG7
CS dataset, it also achieves promising results for open curve
matching in the ETHZ CS dataset. All in all, signature-based
and rich descriptors with proper matching algorithms can
fulfil different requirements in terms of speed and accuracy
for open curve matching.

5.2.3 Evaluation on sketching CS dataset

The purpose of this experiment is to evaluate the difference
between CS descriptors and human perception for sketching
matching. Figure5 illustrates the comparison of all accuracy
values among three types of CS descriptors. Each mark in
this figure represents a mean accuracy value of four dif-
ferent lengths with a combination of CS descriptors and
matching algorithms. Note that the horizontal axis repre-
sents each value’s ID which is used only for visualisation.
In order to save space of x-axis, we annotate the ID of accu-
racy values independently based CS descriptor types. For
instance, since there are nine combinations for the simple
CS descriptors, the ID is in the range [1, 9]. We focus on the
vertical axis by analysing the accuracy values. Considering
the value distribution, signature-based CS descriptors have
the biggest variation ranging from 2.5 to 80%, followed by
the rich CS descriptors which are in the range of [10, 80%].
Simple CS descriptors have the smallest interval [20, 50%].
One reason is that for each signature-based and rich CS
descriptors, there are many algorithms that can be employed
for calculating similarities between CSs. On the contrary,
simple CS descriptors only have one. Therefore, rich and
signature-based CS descriptors have more flexibility for han-
dling different scenarios. Considering the mean accuracy
values among three types of descriptors, rich CS descriptors
(52.68%) is closer to the human perception than signature-
based (47.68%) while the simple CS descriptors (40%)
have the lowest one. Overall, there is still a gap between
the human perception and CS descriptors (mean value
46.79%).

Figure6 illustrates three examples of incorrect match-
ing between CSs. Particularly, In Fig. 6a, we use the simple
descriptor Area ( f1) and its correlated matching algorithm

Simple Signature Rich

600 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5
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0.7

0.8

0.9

1

Fig. 5 Comparison of accuracy values between three types of CS
descriptors. Each mark represents a accuracy value with a different
combination of a descriptor and matching algorithm

(b)(a) (c)

Fig. 6 Examples of incorrectmatching. Sample points aremarkedwith
the blue colour. Red points are the incorrect correspondences (colour
figure online)

in Sect. 3.1. Figure6b shows an incorrect matching using
the signature-based descriptor Area Function ( f14). This
phenomenon normally appears within both point-wise and
vector-wise matching methods, like signature-based and
rich ( f18– f25) descriptors. Figure6c illustrates the incor-
rect matching (red points) using the rich descriptor Contour
Context ( f20) and theHungarian algorithm.With these exam-
ples, readers can better visualise the wrong cases of different
matching approaches.

5.3 Experiment 3: computational complexity

Table14 illustrates the theoretical analysis of computational
complexity for eachCSdescriptor.All the simpleCSdescrip-
tors have the same feature generation complexity O(N ) since
they are generated by simply accumulating values computed
for N CS points. As simple CS descriptors are just scalar
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Table 14 Theoretical analysis of computational complexity for each CS descriptor in terms of feature generation and matching

Name Feature generation Difference value
f1– f9 O(N ) O(1)
Name Feature generation Matching (point matching) Matching (vector distance)

DTW [1] DP [7] Hungarian [31]

f10– f14, f17 O(N ) O(N 2) O(N 2) O(N 3) O(N )

f15, f16 O(N 2) O(N 2) O(N 2) O(N 3) O(N )

f18– f20 f22– f25 O(N 2) O(N 2) O(N 2) O(N 3) NULL

f21 O(N ) O(N 2) O(N 2) O(N 3) NULL

f26 O(N ) NULL NULL NULL O(1)

f27 O(N 2) NULL NULL NULL O(1)

NULL means this part is not considered in our experiments

Table 15 Matching
performance and runtime (hour)
comparison between selected
CS descriptors which have
outstanding matching
performances on ETHZ and
MPEG7 CS datasets

Name Notation Method FG Matching ETHZ CSa MPEG7 CSa

Comcoor f10 χ2-Stat. 0.0001 0.0542 66.6 56.2

Comcoor f10 Hungarian 0.0001 213.74 61.1 64.0

Comcoor f10 Hellinger 0.0001 0.0531 62.1 63.6

Cendistance f11 Hellinger 0.0001 0.0462 62.1 63.6

Tangent f12 DP 0.0001 3.86 67.0 57.8

Point Triangle f19 DP 6.82 121.8 65.8 69.7

Contour Context f20 DP 0.04 6.7 65.0 63.7

Beam Angle f21 Hungarian 0.01 147.1 51.3 77.6

Partial Contour f22 DP 0.18 5.3 60.5 74.1

Opt Par. Con. f23 DTW 0.17 22.1 63.3 60.0

Cho. Dis. f24 DP 0.18 5.4 61.5 74.6

Length Direction f25 DP 0.02 212.1 63.4 64.3

FG feature generation
a We take the mean value of four lengths for comparison

values, their distance can be computed by scalar subtraction.
Thus, its computation cost is O(1).

For signature-based descriptors, except Triangle Area
( f15) and Chord Length ( f16), most descriptors take O(N )

complexity for feature generation since each element in a
feature vector is calculated only using one CS point. f15 and
f16 are both calculated by considering one target CS point
and other reference points selected by searching the whole
CS path. Therefore, their computation complexity is O(N 2).
ForCS retrieval,with the vector distance strategy, all four dis-
tancemethods have the same computation complexityO(N ).

With the point matching strategy, three matching algo-
rithms have different computation complexity. More specif-
ically, (i) the computational complexity of DTW is O(N 2)

because it needs to compute distances for all possible point
pairs in two CSs, each having N points. (ii) For solving
the sequence alignment problem using DP, we reduce the
time complexity from O(N 3)with the traditional brute-force
approach [7]) to O(N 2) with the method introduced in [48].
This is because themethod in [48]makes a complete list of all

pairs of intervals using given CSs so that each pair displays a
maximum local degree of similarity. Like this, the matching
complexity is reduced by trading space for time. (iii) Hun-
garian algorithm solves our CSmatching task in O(N 3) time
as introduced in [34].

For rich CS descriptors, we can observe that most descrip-
tors require (or more than) O(N 2) complexity for feature
generation. In contrast, Beam Angle ( f21) is calculated by
the angles between CS points and its neighbouring points
which can be captured directly. Line Segment ( f26) is calcu-
lated by the statistics of a fixed range of straight-line scales
n (n is set from 5 to 85% in all experiments). Since n is
independent of CS point number N and n � N , the com-
putational complexity is determined by the number of CS
points. Therefore, the complexity of f21 and f26 are O(N ).
For CS matching, the point matching strategy is applied to
descriptors ranging from f18 to f25, in which the match-
ing algorithms have the same complexity as signature-based
descriptors. For the vector distance strategy, Line Segment
( f26) and Sub-Box ( f27) have the complexity O(n) where n
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Table 16 Retrieval results on
two datasets using the fused
descriptors

Descriptors Matching algorithm ETHZ CS dataset MPEG7 CS dataset

Eccentricity ( f3) D-value 68.4 22.7

Point Triangle ( f19) DP 65.8 69.7

Fused DP + D-value 71.2 74.6

Bold values indicate the results with outstanding matching performance

Table 17 Recommended choices of CS descriptors

Best accuracy Promising accuracy and less runtime Fast speed and relatively promising accuracy

Point Triangle ( f19) + DP Partial Contour ( f22) + DP Comcoor ( f10) + Hellinger

Chord Distribution ( f24) + DP Cendistance ( f11) + Hellinger

is the feature dimension. Since their feature dimensions are
fixed and the distance between two vectors can be calculated
in a constant time, their complexity is O(1).

5.4 Runtime comparison and discussion

Table15 illustrates the comparison between the selected
descriptors which have outstanding matching performances
on ETHZ and MPEG7 CS datasets. We can observe that the
selected signature-based and rich descriptors have robust per-
formances in which Beam Angle ( f21) with Hungarian [31]
achieves the best bulls-eye score (77.6%). Tangent ( f12) and
Point Triangle ( f19) with DP [7] obtain the best F1 score.
However, considering the runtime and retrieval performance,
Partial Contour ( f22) and Chord Distribution ( f24) are close
to the best while taking less time for feature generation and
matching.

Based on the observations above, we can draw the follow-
ing recommendations: (i) when choosing a CS descriptor for
open curvematching inwhich the time complexity is not con-
sidered as the primary importance, the best choice is Point
Triangle ( f19) with Dynamic Programming [7] since it is
scale, rotation and translation invariant (Table3) and robust
to CS length change (Tables7, 12). Moreover, it achieves
promising results on both ETHZ and MPEG7 CS datasets
(Table15). (ii) Partial Contour ( f22) and Chord Distribu-
tion ( f24) with DP are the best choices to obtain a stable
and promising performance while taking less computational
time, as shown inTable15. (iii) Ifwewant to apply a fast open
curve matching and obtain a relatively promising results,
Comcoor ( f10) and Cendistance ( f11) with Hellinger [10]
vector distance method are the best choice, for which the fast
runtime for feature generation and matching can be ensured
while the matching performance on both datasets is not the
best but still promising.

To obtain a state-of-the-art performance for open curve
matching on a real-world dataset, multiple CS descriptors
should be chosen and fused [53]. As discussed in [58],

even adding simple descriptors improves the overall perfor-
mance of individual descriptors. According to the matching
performance on ETHZ and MPEG7 CS datasets, we fuse
Eccentricity ( f3) that is the best simple CS descriptor on
both datasets,with other signature-based and richCSdescrip-
tors. To compute proper fusion weights, we first divide the
dataset into two parts with the equal size, one used for weight
estimation and the other for testing. For fusion weight esti-
mation, we employ a supervised optimisation scheme [59]
in which two heuristic approaches are combined. We experi-
mentally assess thematchingperformanceby fusing thePoint
Triangle ( f19) and Eccentricity ( f3) descriptors. Our experi-
ments show that, compared to Point Triangle ( f19), the fused
descriptor improves the matching accuracy by 4.4% on the
ETHZ CS dataset and by 4.9% on the MPEG7 CS dataset
(Table16). Meanwhile, the computational complexity and
runtime generally remain the same since Eccentricity ( f3)
has low complexity for both feature generation and match-
ing. Therefore, a proper combination of CS descriptors can
improve the matching accuracy over the individual descrip-
tors.

6 Conclusion and future work

In this paper, we made a comprehensive comparison of 27
CS descriptors by correlating them with distance and match-
ing methods. We also studied and evaluated the invariance
properties, matching performance, computational complex-
ity and runtime of CS descriptors. In order to cover various
configurations for CS matching, the evaluation is carried out
with respect to different matching algorithms and CS lengths
(see Table2). From the theoretical and experimental results,
it can be derived that the selection of CS length andmatching
algorithm affects the matching performance while matching
algorithms have a higher influence. The results further reveal
that signature-based and rich descriptors with proper match-
ing algorithms can fulfil different requirements in terms of
speed and accuracy for CS matching. The overall recom-
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mendations for choosing CS descriptors and their settings
are illustrated in Table17. In addition, a proper combination
of rich and simple CS descriptors can improve the match-
ing accuracy over the individual descriptors without adding
too much computational complexity. In the future, we will
bring more CS descriptors and matching algorithms into our
evaluation.
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