
Xmon: A Lightweight Multilayer Open Monitoring Tool for

 Large-scale Virtual Clusters

Cong Yang, Jue Hong, Cheng-Zhong Xu, Wen-Long Du, and Dong Lin

Cloud Computing Research Center, Shenzhen Institutes of Advanced Technology

Chinese Academy of Sciences

Shenzhen, P.R.C China

{cong.yang, jue.hong, cz.xu, wl.du, dong.lin}@siat.ac.cn

Abstract—Metrics coming from virtual clusters can be used for

task and node errors locating, diagnosis and predicting. They
are crucial for management and performance measurement of

large-scale clusters. However, conventional monitoring system

has limited ability of multilayer cluster metrics collection,

cluster diagnosis and automatic error correction. In this paper,

we present Xmon to settle previous problems. Specifically,
Xmon uses a range of /proc and commands parsing methods

and the open API Node Daemon to collect multilayer metrics

includes process, virtual and physical layers. Secondly, by

Decision Tree, Diagnosis Module of Xmon can generate a

cluster report which includes an errors list and a cluster score
to help managers quickly realize and locate running errors in

virtual and physical clusters. Finally, the Controlling Unit with

opening API in the Node Daemon Agent can change the

running state of problematic process automatically and push

alarming messages to managers. With the support of NoSQL,
AMQP, RPC and other technologies, the performance,

scalability and reliability of Xmon are effectively ameliorated.

Evaluation shows that Xmon is able to collect metrics from

physical and virtual node effectively with few segment faults.

We also show that Xmon loads more than 1000 nodes with just
0.065% of the total network’s bandwidth and no more than 10

packages lost in one hour.

Keywords-Cluster Monitoring; Cloud Computing; Virtural

Machine; NoSQL; Decision Tree

I. INTRODUCTION

As a high-level virtual system component, virtual machine

provides a more advanced abstraction for resources
 [10]

.
Virtual cluster is composed by virtual machines, on which

running the same tasks. Virtual Cluster designed on the basis
of virtual machine and network to provide virtual executing

environment for large-scale distributed applications. Virtual

clusters offer the fundamental support for brand-new cloud
computing systems as well as virtual High Performance

Computing system.
The cluster monitoring system observes the behavior,

running status and other vital information of nodes and
clusters, stores and analyses metrics, and displays results. It

is crucial for cluster management and performance

measurements as the monitoring data can be used to
diagnose problems and to suggest remedies by both end

users and system administrators.

However, tradit ional monitoring tools have limited
abilit ies of process and virtual layer metrics collection

 [2, 3, 6,

and 7]
, automated errors analysis and mining process

 [3]
, virtual

cluster and task monitoring, open API, etc. Some of

monitoring systems produce too much pressure to the both

node and cluster
 [2]

. All of these drawbacks motivated us to
design and develop a lightweight multilayer tool for large-

scale virtual and physical clusters.
This paper proposes a new monitoring system, named

Xmon, which solves aforementioned problems by a novel
architecture of system and Node Daemon, data processing

and algorithm of metrics min ing. The architecture of Xmon

is composed by three components, in which there are several
sub-components which could be flexib le gathered or divided

onto different services based on the scale of clusters. We use
RPC technology and open API methods to ensure the

lightweight and adaptively of Xmon Node Daemon. We also
provide the structure of Decision Tree and the process of

cluster health diagnosis.

We make the following contributions :

 We experimentally reveal an automatic cluster

health diagnosis module over the incoming streams
and storage metrics.

 We propose a new architecture of monitoring tool
for large-scale virtual and physical clusters. It

achieves effects of real-time monitoring,
MapReduce metrics analysis, alarming, etc.

 We propose architecture of lightweight Node
Daemon which collects metrics in different layers

and supports redevelopment based on its open API.

The rest of the demo proposal gives a brief literature
review in Section 2. We present the architecture of Xmon in

Section 3. We discuss the detailed implementation of Xmon
architecture, cluster diagnosis algorithm and visualization in

Section 4. System evaluation, overhead and scalability,
cluster diagnosis module evaluation are discussed in Sections

5. We conclude in Section 6.

II. RELATED WORK

Before starting to design the Xmon architecture, we
analyzed many documents about state-of-the-art monitoring

systems. However, most of these systems have some

limitations in monitoring layers, process, architecture, etc.

Therefore, in this paper, we concentrate on the following

issues:

1) Monitoring layers: with the development of grid

virtualization and cloud computing, more and more

virtualization products are used in the cloud computing

platform. However, traditional tools just collect the vital

metrics of physical machine and have little ability of task and

virtual machine information collection.

VM2 VM2

PM2

VM1

PM1

VM3 VM3

PM3

Task1 Task2

Virtual
Cluster1

Virtual
Cluster2

Figure 1. Virtual Cluster (PM=physical machine, VM=virtual machine)

As is shown in Figure 1, when users run tasks with virtual

machine in the cloud computing cluster, every virtual

machine which runs the same task will be organized as a

virtual cluster. Users need to know the task process and the

status reports of virtual cluster. Therefore, Xmon is designed

to collect mult ilayer metrics which not only includes process

and physical machines, but also virtual machines and virtual

clusters.

2) Monitoring Process: conventional monitoring tools

such as Ganglia
[2]

 and Supermon
[3]

 collect metrics via

pushing or pulling mechanism from each node at an interval

that allows new data to be available and the monitoring

system to keep up effectively. However, they do not provide

automatic analysis and any data mining process. In other

words, they are not smart. They main ly provide

admin istrators with the ability to view the primitive data on a

per-node basis. Typical commercial management tools, such

as those from IBM Tivoli
[4]

 and HP OpenView
[5]

, compare

these instantaneous data values on a per-machine basis to

predefined thresholds and either send notification to the

system administrator or automatically shut down or reboot

the system in response. Accordingly, other than the main

features of monitoring, Xmon also needs the control unit in

the node daemon agent.
3) Monitoring architecture: most existing monitoring

systems in clusters maintain a centralized server or a set of
hierarchically organized servers to aggregate and index

monitoring system performance data, such as Supermon
 [3]

,
PARMON

[6]
, ClusterProbe

 [7]
 and R-GMA

 [8]
, which use a

centralized server to monitor system performance. In contrast,

Globus MDS2
 [9]

 and Ganglia
[2]

 employ a set of hierarchical
Servers. Nonetheless, the problem is that the centralized

server might become both a bottleneck and a s ingle point of
failure in large-scale cluster environment. For the

hierarchical system, the partitioning scheme is often
predefined and cannot adapt to the dynamic changes of the

monitoring nodes. For example, if the node running Ganglia

gmetad is under heavy load and can‟t reply monitoring data

in time, the upper level gmetad has no idea of the situation
and will wait for a long time. Therefore, Xmon architecture

is disrupted, and the main Service is composed of 4
independent components which can be deployed in one

single service or the service cluster according to the nodes
quantity.

4) Metrics analysis: several monitoring systems have

been developed mainly to settle the issues of scalability and
reliability

[10, 11, and 3]
. And most of them provide a graphical

interface for viewing the cluster behaviors in real time and
also log the raw monitoring data. However, there is no such

manpower to make effective use of this real-t ime monitoring
and most of the useful but hidden information has not been

discovered.
[11]

 Thus, an efficient data min ing module is
absolutely crucial for monitoring systems , and this capacity

is essential for turning the passive monitoring tool into an

active administrator assistant. Xmon is an intelligent
monitoring system that is being built to address these issues.

The data mining and cluster diagnosis module of Xmon
should be able to analyze the monitoring data in real-time

and report the patterns and anomalies for inspection. In
particular, the control unit of Xmon node daemon can turn

the process state timely when the diagnosis module finds

errors in the running process.

III. ARCHITECTURE OF THE XMON

In this section, we present Xmon design in details. Firstly,

we discuss the Xmon Node Daemon architecture and Metrics

Delivery process. After that, we introduce the architecture
and working process of Center Service. Meanwhile, we also

talks about the NoSQL Database Service, which is
responsible for the data storage and cluster health diagnosis.

Final section displays shows the GUI of Xmon in the web
and Android Client. The overall system design is shown in

Figure 2.

PC

Physical ClusterVirtual Cluster

Smart Phone

PM Metrics Message

Cluster Message

VM VM VM PM
VM Metrics Message

Persistent Flowing Message

Live Monitoring Message

Alarm Message

PM: Physical Machine

VM: Virtual Machine

Xmon Service

Client

Node Daemon

PM PM PM

NoSQL Database Service

Web Service Center Service Message Queue Service

Figure 2. Architecture of Xmon.

A. Xmon Node Daemon and Metrics Delivery

Xmon Node Daemon is mainly in charge of metrics

collection, packaging, and sending. As is shown in Figure 3,
node daemon collects metrics from different layers, which

could meet different demands from different monitoring

requests. Xmon Node Daemon is an opening environment
which enables people to redefine it according to their

individual requirement.

Process (name, state, port, IO,
CPU, memory, etc.)

Virtual Machine (name, state,
nets, vbds,vbd_oo, etc.)

Physical Machine (CPU, memory,
disk, network I/O,etc.)

Figure 3. Metrics that be Collected in Different Layers.

Node Daemon is applied to scan and parse node
information periodically, and send the latest packaged

metrics to the Message Queue Service with the frequency
predefined by the users . When Node Daemon is killed or the

service is rebooted, it will restart automatically.
After metrics are collected and packaged, it will be sent

to the Message Queue Service. Message Queue Service is
responsible for monitoring metrics delivery and exchange,

using AMQP as the basic queuing and routing protocol. The

Advanced Message Queuing Protocol (AMQP) is an open
standard application layer protocol for message-oriented

middleware. The defining features of AMQP are message
orientation, queuing, routing (including point-to-point and

publish-and-subscribe), reliability and security.
[12]

……

Message Queue 1

Physical Cluster

Virtual Cluster

Route
Type=direct

……

Message Queue 2

Physical

Virtual

Center
Service

Figure 4. Message Queue Service.

As is shown in Figure 4, Xmon Message Queue Service
divides the original messages into two types in terms of the

Route. Each type is delivered into the Message Queue,
waiting for the Center Service requests. To achieve the

AMQP functions, we use rabbitMQ as the Message Queue
Service‟s main broker software. RabbitMQ is an open source

message-oriented middleware, using the standard Advanced

Message Queuing Protocol (AMQP). The RabbitMQ server
is written in Erlang and is built on the Open Telecom

Platform framework for clustering and failover.
 [13]

B. Center Service and Data Storage

Centre Service is responsible for data streaming analysis,

Database Service and Web Service communication,
commands transfer and Node List updates.

NodeList
Update
Module

Data
Sending
Module

Alarming
Module

Database Service

Web Service Message Queue Service

…

Node List

Data
Unpacking

Module Data
Receiving
Module

NodeList
Analysis
Module

Data Switch
Module

Data
Persistent

Module

Figure 5. Architecture of Center Service.

Figure 5 is the architecture of Xmon Center Service,

which is composed of the following main components:

1) Data Storage Module: this module is in charge of

commuicating with NoSQL Database, metrics and system

log insertion. Data Storage Module is a thread of Center

Service process, which is always running after the Center

Service is started.

2) NodeList: NodeList is a Hash Table which stores the

latest basic node information. Table 1 is the NodeList form,

in which we can see that nodes are distinguished by several

marks including federation name, cluster name and cabinet

name, etc. In the Xmon Center Service, NodeList is visited

and updated with very high frequency; hence, it needs to be

placed in the memory of Center Service machine with hash

table.

TABLE I. NODELIST FORM

Name Describe is NULL

ID ID number of Node no

Federation federation name yes

Cluster cluster name no

Cabinet cabinet name yes

Node Name node name no

Node IP node ip (eth0 prior) no

Last Update last update time (S) no

3) NodeList Update and Analysis Module: this module

is in charge of the NodeList updating and analyzing, which is

also a non-stop thread of the Center Service process. When

the new package is collected and unpackaged, node mark

will be extracted and analyzed by NodeList Update Module

to check whether this node exists in the NodeList. If it exists,

the node information in the NodeList needs to be updated. If

not, the new node informat ion will be inserted into the

NodeList and meanwhile, the Alarming Module will send the

alarming message to the Web Service.

What‟s more, Analysis Module periodically analyzes the

NodeList to check the overdue node information. If the

duration between the current date and the date of the latest

update in the NodeList surpasses the time defined by the

users (default time is 10s), the Analysis Module will drops

this node and send the alarming message to the Alarming

Module at the same time. These two modules can keep the

NodeList fresh and up-to-date.

4) Alarming Module: this module is another non-stop

thread of the Center Service process which is responsible for

data checking, listening and organization. Alarming module

is to examine the unpackaged data stream uninterrupted.

Once metrics triggers the alarm condition, Alarming Module

will organize and push alarming messages immediately.
All in all, Center Service is a robust process which

includes three non-stop threads that are responsible for
different duties of data processing and analyzing. Center

Service loads parameters from XML file including node data
sending frequency, Web Service IP address, NoSQL

Database Service IP address and Port, etc.
NoSQL Database Service is responsible for metrics

storage, cluster diagnosis, and log storage. It is widely

acknowledged that monitoring metrics come from different
layers and environment, like Windows and UNIX. Therefore,

most of them are unstructured and loosely-related and it‟s
hard to store and analyze them by SQL Database. Therefore,

using NoSQL database system can easily solve this problem.
NoSQL means “not only SQL”

[14]
, which is developed to

manage large volumes of data that do not necessarily follow
a fixed schema. NoSQL database management systems are

useful when working with a huge quantity of data and the

data‟s nature does not require a relational model for the data
structure. The data could be structured, but it is of minimal

importance and what really matters is the ability to store and
retrieve great quantities of data, but not the relationships

between the elements.
In Xmon, we use mongoDB as the NoSQL database

service system. MongoDB (from "humongous") is an open

source document-oriented NoSQL database system
[15]

.
Written in C++, mongoDB is part of the "new" NoSQL

family of database systems. Instead of storing data in tables
as is done in a "classical" relational database, mongoDB

stores structured data as JSON-like documents with dynamic
schemas (MongoDB calls the format BSON), making the

integration of data in certain types of applications easier and

faster.

C. GUI

Web Service supplies data pool and real-time service to

the JSP and Android based client to support GUI for Xmon.

Written in Java, web service on the one hand restlessly
updates Data Pool by communicating with Center Service to

provide the fresh monitoring metrics to the client and

communicate with Database Service to supply cluster
diagnosis results on the other hand.

…

Data Pool

Center
Service

Message
Exchange
Module

Android
Monitoring

Module

Web
Monitoring

Module

Database
Service

Cluster
Diagnose
Module

System
Log

Module

Figure 6. Web Service.

As is shown in Figure 6, Data Pool actually is a static

ConcurrentHashMap which stores the latest metrics of the
whole cluster. System Log Module is a XML file located in

the same root directory of Xmon. With RPC technology,
Message Exchange Module is respons ible for the message

receiving and the Data Pool updating. Cluster Diagnose

Module is used in the agent between the Database Service
and the client.

Clients include Web page client and Android client. The
Web page client mainly covers cluster (physical and virtual)

information, status and diagnosis, virtual and physical node
real-time monitoring, alarming, etc. Android client is mainly

responsible for alarming, cluster and node static information
searching. Visualization and interaction of client will be

discussed in next Section.

IV. IMPLEMENTATION

The goal of Xmon is to exploit a lightweight mult ilayer
tool for large-scale virtual clusters. Therefore, we will

discuss how to realize lightweight, multilayer monitoring

and open API in Section A. After that, we provide the
process and architecture of cluster diagnosis module in

Section B. Finally, real-time visualization will be discussed
in Section C.

A. Lightweight and Open API Xmon Node Daemon

Before starting to design the architecture of Xmon Node

Daemon, we had confirmed that this component at least
achieves the following goals:

 Multilayer metrics collection.

 Opening API, supporting redevelopment.

 As lightweight as possible.
To achieve the goals mentioned above, we have designed

the architecture of Xmon Node Daemon, as illustrated in

Figure 12. Written in C++, Node Daemon has 3 important
units:

1) Data Collection Unit: There are 3 modules in this unit.

/proc analysis module is the default module, which is used

for /proc scanning and parsing. In this module, useful metrics

are collected and send to the Data Packaging Unit. For

virtual machine cluster, we collect both process information

(PID, state, port, vmsize, cpus_allowed, stack usage, etc.) by

/proc parsing and virtual machine information (CPU and

memory usage, Nets, etc.) by running different commands

like xentop -bi1, etc. By opening API, User Defined

Collector Module is responsible for users to define their own

collecting methods, such as single layer and metric collecting,

etc. Third-part Collector Module is used in third-party plug-

ins collection tools (or protocols) using or configuring, such

as SNMP, CPU fan speed and temperature plug-ins. With

this unit, users can conveniently call or define data collection

methods.

2) Data Packaging Format: The default packaging

method is JSON (JavaScript Object Notation), a lightweight

text-based open standard designed for human-readable data

interchange. Other Packaging Module and User Defined

Packaging Module are opening-API modules. Working with

two opening-API modules in the Data Collection Unit, these

4 modules ensure the flexibility and applicability of the

Xmon Node Daemon.
After metrics were packaged, it will be queued by the

Message Queue Service. After that, all of these metrics are
converging in the Center Service, waiting for examin ing,

storing, and exchanging. Monitoring metrics processing is
shown in Figure 7.

Physical Cluster
Virtual Cluster

Message Queue
Service

Virtual Cluster

Data Filter

Physical Cluster

Update
NodeList

Alarming

Alarming
Message Push

Yes

Data
Storage

Update Web
Service Data

Pool

Figure 7. Data Processing in Xmon.

Before packaged metrics flows into the Message Queue

Service, each metric should be marked with different marks
based on its layer. Mark is composed of the following

elements:
mark = metrictype + nodename + nodeip +

 cabinet + cluster + federation
For example, if a metric comes from physical machine,

the mark should be:

PHC-ccrfox8-202.198.129.254-CA34-XJYCM-SCGN

If it comes from a virtual machine, it should be:

VIC-domain0-202.198.129.233-CA35-XJYVCM-SCGN

As is shown in Figure 7, marked metrics flows into the

Message Queue Service, and is divided and pushed into two

different queues by its marks. After that, queues are filtered

and collected in the Center Service. In Center Service, clean
metrics are sent to three non-stop threads at the same time

for storage, NodeList updating and alarming

3) Controlling Interface:
We believe that a good monitoring system is not only used

for cluster monitoring, but also for controlling. However, too
much control functions in the node daemon might take up

more node resources. Therefore, based on RPC (Remote

Procedure Call) technology, we design the Control Unit to
make Node Daemon more lightweight and intelligent.

 Sleeping Function. This section is to ensure that the
daemon lightweight running. Some non-commonly-

used thread is not in the running state, but in a
"sleeping" state, waiting for the Data Receive

Module to receive commands through RPC and
activate it. These threads include daemon pausing,

sending frequency updating, process tracking, etc.

By this module, even node daemon process is full of
functions, but with small usage of resources.

 Process Control. Th is section is responsible for
changing the running state of a process according to

the instructions of the Xmon Center Service. The
significance of this module is to help nodes running

more securely by locking the running status of
doubtful process before the alarming message

reaches the clients.

 User Defined Control. Similar to units, users can
define their own control functions by the Opening

API in this module.
Except for these 3 modules, Xmon Node Daemon also

has Listening Module and System Parameter XML,
Listening Module is responsible for commands listening and

data pushing by RPC technologies and rabbitMQ data

pushing functions, respectively. System Parameter XML is
used as system configuration file . Each Services and Node

Daemons share the same System Parameter XML that
ensures the same frequency, contents and forms of metrics.

Structure of the System Parameter XML is illustrated in
Table 2.

TABLE II. CONTENTS OF SYSTEM PARAMETER XML

Parameter Describe

Web Service IP and Port String and int, respectively

Center Service IP and Port String and int, respectively

Message Queue Service and Port String and int, respectively

DataBase Service IP and Port String and int, respectively

DataBase Name and Collection String and String, respectively

Default Send Metrics Frequency int , default is 5s

Monitoring Layers Physical, Virtual, Process. bool

SystemType Windows, Linux, etc. bool

Default Packaging Type JSON, bool

CollectionType /proc, user defined, third-part, bool

Control Type process control type, bool

Metrics List 40 metrics list, bool in each

B. Cluster Diagnosis

Cluster Diagnosis module is a non-stop thread running in

the Database Service which makes Xmon more intelligent
and useful.

Load Increase
Test

Scoring
Algorithm

scoring

Learning and
modeling

Diagnosis
Module Score

Node
Problems

Cluster
Report

Training Set

Metrics

Figure 8. Principle of cluster diagnosis module.

The mainly mission of the Cluster Diagnosis is to help
users to manage nodes or clusters more effectively and

conveniently by reading the diagnosis reports. Figure 8
shows the principle of the cluster diagnosis module. Cluster

report is composed of Score and the node problem list.
Score is set between 0 and 100, describing the general

health condition of the cluster. For example, Score = 0

means that all nodes in cluster are dead or shut down. Score
= 100 means that there is no task or virtual machine running

on the cluster. Higher than 60 scores means that virtual and
physical cluster is running stable with no more than 4 errors

or warn ings in the node problem list. Lower than 30 scores
means that some nodes in the cluster are unstable or dead,

and there are more than 6 errors or warnings in the node
problem list. By checking the cluster score and the node

problem list, users can quickly be informed of the general

cluster status and problems. We use Decision Tree as the
basic diagnosis module. Attribute Selection, Final Score and

The relationship between Attributes and the final Score are
the primary aspects for research.

We deploy the cluster diagnosis unit on the NoSQL
Database Service. To support large-scale metrics

MapReduce analysis , we are fully making use of the

mongoDB master-slave replication features, setting up a
master node and 3 slaves (Figure 9).

Figure 9. NoSQL Database cluster.

MongoDB supports an automated sharding/partitioning

architecture, enabling horizontal scaling across multiple

nodes. For Xmon that outgrow the resources of a single

database server, mongoDB can convert to a sharded cluster,
automatically managing failover and balancing of nodes,

with few or no modifications to the original application code.
As is shown in Figure 8, a replica set is a set of three servers,

each of which contains a replica of the entire data set for the
given shard. One of the n servers in a replica set will always

be primary. If the primary fails, the remaining replicas are

capable of electing a new master according to the predefined
priority level (dotted line). Details of diagnosis module are

discussed in technical report
[17]

.

C. Real-time Visualization

To realize the real-t ime monitoring, we defined a static
Hash Table, in which stored the latest metrics of clusters by

JSON format. Hash Table is continuously updated by the
Center Service with RPC and visited by web page by

Highcharts and Servlet. Highcharts is a charting library
written in pure JavaScript, offering intuitive, interactive

charts to web site or web application.
 [16]

The user interface view is shown in Figure 13. Xmon
uses Highcharts to visualize historical and real-time

monitoring information for cluster (physical and virtual),
node (physical and virtual), and metric trends over different

time granularities ranging from minutes to hours. Highcharts
is a popular middleware for graphing time series data. For

cluster general status, Highcharts generates graphs which
plot historical trends of metrics versus time. The default time

is one hour, but users can define the time granularity

according to their needs. These graphs are then used by
Xmon and exported to users using a JSP web front-end.

Because of the opening API and JSON format metrics,
Xmon can use third-part tools to visualize historical

monitoring informat ion like RRDTool (Round Robin
Database), etc. This allows website developers to easily

customize the look and feel of the website without damaging

the underlying content engine.
Users can conveniently interact with Xmon web page by

choosing and adjusting clusters, nodes, metric types,
frequency, chart size, etc. What‟s more, managers also can

check system logs and cluster status by cluster diagnosis
module. They can send commands to the Center Service and

Node Daemon by the system parameter page.

V. EVALUATION

In this section, we present a quantitative analysis of
Xmon along with an account of experience gained through

real world deployments on SIAT Clusters. For the analysis,

we measure scalability and performance overhead in both
Xmon Node Daemon and global. Also, we measure the

package loss rate in different components of Xmon to find
the bottleneck of Xmon.

A. Experiment Setup

In this paper, we used Xnebulae cloud computing

systems and normal PC cluster to evaluate Xmon. Xnebulae
is a cluster in the Cloud Computing Research Center,

Shenzhen Institutes of Advanced Technology (SIAT) which
consists of approximately 15 SMP nodes, each consists of 16

2.40GHz Genuine Intel Xeon(R) E5620 CPUs, 6 GB of

RAM, Four 1 TB disks, Gigabit Ethernet connections and
run the SUSE Linux Enterprise Server 11 (x86_64) system.

The normal PC Cluster is Lenovo table PC Ubuntu
cluster in the Cloud Computing Research Center in SIAT,

currently be used for web-based system testing. The cluster
consists of approximately 5 dual-processor SMP nodes. Each

SMP is a Lenovo M5500 desktop, each of which contains

AMD 2.70GHz Athlon (tm) 7750 CPU, 2.00GB memory
and one 500GB disk. The cluster also includes a uses

Extreme Networks Huawei switches for Gigabit I/O
connectivity between the nodes. All nodes in the cluster run

the Ubuntu 10.04 LTS-64 bit.

B. Overhead and scalability

Before a cloud computing monitoring system to be widely
used, it must first meet the prerequisites of having low

performance overhead and being able to scale to cluster size
systems. To quantify this, we performed a series of

experiments on clusters running Xmon. Because each default

Node Daemon is responsible for metrics collection and
sending, and all of the metrics are collected by Message

Queue Service. Therefore, for performance overhead, we
measured both local overhead incurred within the nodes (e.g.

CPU overhead, memory, network bandwidth) as well as
„„global‟‟ overhead incurred between the nodes and Xmon

Service. For scalability, we measured overhead on individual
nodes and quantified how overhead scales with the size of

the system, both in terms of number of nodes within a cluster

and the number of services being Xmon Service.

1) Xmon Node Daemon Overhead: In Table 3, we show

local per-node overheads for local monitoring for Xnebulae

and personal PC cluster. Data fo r this table was collected by

running the top command every 5 seconds to obtain process

informat ion and averaging the results. For Xnebulae, these

numbers represent the per-node overheads for a cluster of 15

SMP nodes. For normal PC Cluster, these numbers

represent the per-node overheads for a cluster of 5 SMP

nodes.

TABLE III. NODE DAEMON OVERHEAD

Clusters
O btained Items (Average)

CPU Usage (%) Phy Mem (kb) network out(byte)

Xnebulae < 0.1 84 860

PC Cluster < 0.1 96 660

Local per-node overheads on Xnebulae and normal PC

cluster are quite small. Per-node overheads for nodes at both

Xnebulae and PC cluster account for less than 0.1% of the

CPU, respectively. Physical memory usage is moderate,

84kb and 96kb for Xnebulae and PC cluster respectively.

Network out, on the other hand, are small. On Xnebulae,

Xmon Node Daemon has only 860bytes metrics produced in

each period of data collection in single node. On PC cluster,

the number is even smaller, just 660bytes per-period of data

collection on each node. Since Xmon Node Daemon only

collects physical machine information, no I/O overhead is

incurred.

2) Global overhead: On each node of Xnebulae and PC

cluster, we deployed virtual machines at random, but no

more than 16 and 2 on Xnebulae and PC cluster, respectively.

Virtual machine is chosen from Virtual Machine List in table

4 at random.

TABLE IV. VIRTUAL MACHINE LIST

ID VCPUS
Memory

(max, KB)
NETS VBDS

NETTX

(max, KB)

NETRX

(max, KB)

1 1 2097000 1 3 97500 27900

2 2 1097000 1 1 97500 27900

3 1 2097000 1 2 975000 279000

To measure the global overhead of Xmon, we decompose

the network bandwidth into physical cluster monitoring

bandwidth and virtual cluster monitoring bandwidth. All

bandwidth informat ion is collected by Xmon Queue Service,

in which metrics are divided into two different queues

(Physical and Virtual) and are measured by default polling

interval. By writ ing queued messages into two different files,

we can easily record file size every 5 seconds and then

summarize global overhead.

TABLE V. GLOBAL OVERHEAD

Clusters
O btained Clusters

Physical Cluster(KB/5s) Virtual Cluster(KB/5s)

Xnebulae 9.75 3.69

PC Cluster 2.15 1.07

As is shown in table 5, global overheads on Xnebulae and

normal PC cluster are also quite small. Virtual cluster

overhead is based on the number of task and virtual machine,

but only takes limited bandwidth.

3) Scalability: In these experiments, we characterize the

scalability of Xmon as we scale the number of nodes within
a cluster. To measure scalability within a single cluster, we

use the PC cluster. We selectively d isable Xmon Node
Daemons to obtain cluster sizes ranging from 1 to 1000

Node Daemons and measure performance overheads. By

this method, each node runs no more than 200 Daemons in
PC cluster.

Figure 10. Network Bandwith of Xmon.

In Figure10, we quantify the scalability of Xmon on a

single cluster by showing the total Message Queue Service
bandwidth consumed as a function of cluster size. By

recording bandwidth in Message Queue Service, we observe
a linear scaling in bandwidth consumed as a function of

cluster size. In this case, we observe small constant factors,
which can be at least partially attributed to rabbitMQ‟s use

of thresholds.

At 1000 node daemons, for example, we measure

bandwidth consumed to be just 37.32Kbits/5s. On a Giga bit

Ethernet network, 652.32 Kbits/5s amounts to just 0.065%

of the total network‟s bandwidth.

Reliability: In this section, we use PC cluster to evaluate

the reliability of Xmon. The reliab ility testing of the overall

system is based on the package loss rate in d ifferent

components of Xmon when the number of Xmon Node

Daemon keeps increasing. We increase the number of Node

Daemons from 10 to 1000, which sampling points 10, 100,

200, 300, 400, 500, 600, 700, 800, 900 and 1000. During

this time, we count totall packages number in nodes,

Message Queue Service, Database Service and web page

every 1 hour. After samples are collected, we figure out the

number of d ropped packages in different components .

Through comparative analysis of these four components, the

comprehensive evaluation of the system bottleneck and

overall reliability will be worked out.

Figure 11. Dropped package number in each components.

As is shown in Figure 11, MQS and DBS mean a drop in
packages number in Message Queue Service and Database

Service, respectively. After comparing the number of
dropped packages, we find that it is almost the same in these

two components, which suggests that the packages loss in

DBS is main ly due to packages dropping in MQS. But the
decline is negligible and in the acceptable range.

WPS means dropped packages number in Web Page
which is the bottleneck of Xmon. Figure 11 shows that when

the number of Node Daemon rises to 600, more and more
packages are dropped. We find that the drop of packages in

web page is due to Highcharts and its way of getting data

from Web Serv ice. One Highcharts in Xmon produces one
servlet, and too much Highcharts will create the same

number o f servlets in one web page which would reduce the

efficiency charts updates and lead to the package loss.

Therefore, this component needs to make further
improvements to reduce the package loss rate.

VI. CONCLUSION

In this paper, we presented the architecture,

implementation, and evaluation of Xmon, A lightweight
multilayer open monitoring tool for large-scale physical and

virtual clusters. Xmon is based on an inattentive hierarchical
design which uses RPC listen/announce protocol and the

emerg ing AMQP standard to monitor state within clusters. It
uses a careful balance of simple des ign principles and sound

engineering to achieve high levels of robustness and ease in

management. Based opening API on Node Daemon, the
implementation has been ported to an extensive set of

operating systems and processor architectures and is
currently in use on Xnebulae cluster in SIAT. W ith parsing,

collecting and gathering virtual machine and task
information, Xmon realizes the function of virtual cluster

and virtual machine monitoring. According to experiments,

the monitoring system only takes a small amount of
resources of nodes and clusters, with high efficiency. The

actual practice demonstrates that the monitoring system has
good stability. Xmon has been running steadily on Xnebulae

with little decline in performance.
Future work will main ly focus on the Node Daemon

architecture and stability to improve the scope and security
of Xmon.

ACKNOWLEDGMENT

This material is based upon work supported by the

Shenzhen Institutes of Advanced Technology (SIAT). Any
opinions, findings, conclusions or recommendations

expressed in this material are those of the author(s) and do

not necessarily reflect the views of the Chinese Academy of
Sciences, or other funding parties.

We do appreciate the invaluable data and discussion
offered by Man-Li Zhou from Northeast Normal University

and Yan-Yi Wan from Hong Kong University of Science
and Technology.

REFERENCES

[1] J. M. Brandt, A. C. Gentile, D. J. Hale, and P. P. P ébay , “OVIS: A
Tool for Intelligent, Real-time Monitoring of Computational
Clusters,”. Parallel and Distributed Processing Symposium (IPDPS
06), pp.25-29.

[2] Matthew L.Massie,Brent N.Chun and David E.Culler, “The ganglia
distributed monitoring system: design, implementation, and
experience,”, Parallel Computing 30 (2004) , pp.817–840.

[3] Matthew J.Sottile and Ronald G.Minnich, “Supermon: A high-speed
cluster monitoring system,”, Cluster Computing, 2002. Proceedings,
pp. 39–46.

[4] “IBM Tivoli”, http://en.wikipedia.org/wiki/Tivoli_Gardens.

[5] “HP OpenView”, http://en.wikipedia.org/wiki/HP_OpenView.

[6] R.Buyya,"PARMON: a portable and scalable monitoring system for
clusters,", Software: Practice and Experience,vol.30, pp.723-739,2000.

[7] Z.Liang, Y Sun, and C Wang. "ClusterProbe An Open, Flexible and
Scalable Cluster Monitoring Tool", In IEEE Intercational Workshop
on Cluster Computing, pp. 261-268,1999.

[8] A.W.Cooke, "The Relational Grid Monitoring Architecture:Mediating
Information about the Grid", Journal of Grid Computing, vol. 2, no. 4,
December 2004. pp.1-28.

[9] S. Czajkowski, K. Fitzgerald, I. Foster and C. Kesselman, "Grid
Information Services for Distributed Resource Sharing", Proc.of
HPDC,2001. pp. 1-14.

[10] R. J. Figueiredo, P. A. Dinda, and J. A. B. Fortes, "A case for grid
computing on virtual machines", in Proceedings of the 23

rd

International Conference on Distributed Computing Systems, 2003.

[11] Evan Hoke, Jimeng Sun and Christos Faloutsos, “InteMon: Intelligent
System Monitoring on Large Clusters,” Proc. IEEE Symp.
Proceedings of the 32nd international conference on Very large data

bases (VLDB‟06), IEEE Press, September 12-15, 2006, pp. 1239-
1242.

[12] O'Hara, J, "Toward a commodity enterprise middleware", Acm
Queue May/June 2007, Vol.5 No.4. pp. 48–55.

[13] “ rabbitMQ”, http://www.rabbitmq.com/

[14] “NoSQL”, http://nosql-database.org/.

[15] “mongoDB”, http://en.wikipedia.org/wiki/MongoDB.

[16] “Highcharts”, http://www.highcharts.com/.

[17] Cong Yang, Cheng Zhong-Xu, etc. “Research on the Health
Diagnosis Module of Large-scale Clusters”.

Message
Queue
Service

Listening
Module

Data Receive
Module

Control Unit

Sleeping
Function
Module

Process Control
Module

User Defined
Control Module

Data Packaging Unit

Default
Packaging
Module

Other
Packaging
Module

User Defined
Packaging
Module

Data
Send

Module

Data Collection Unit

/proc
Analysis
Module

User Defined
Collector
Module

Third-part
Collector
Module

System
Parameter XML

Figure 12. Architecture of Xmon Node Daemon.

Figure 13. User Interface view.

