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ABSTRACT

Relative Camera Pose Estimation (RCPE) aims to cal-
culate the translation and rotation between two frames with
overlapped regions, which is crucial to computer vision and
robotics. This paper presents a novel siamese convolutional
transformer model, SiTPose, to regress relative camera pose
directly. SiTPose is distinguished in three aspects: (1) With
a cross-attention feature extractor and a compact transformer
encoder, extreme rotation errors (> 150°) are significantly re-
duced: from 9.7‰ with the state-of-the-art 8-Points to 1‱
on the 7Scenes dataset. (2) SiTPose is also robust to narrow-
baseline cases (slight rotation angle and large translation be-
tween neighboring frames), while existing RCPE methods
mainly focus on wide-baseline cases. (3) SiTPose can be
flexibly extended to geometry-based vSLAM (namely SiT-
SLAM) in a multi-threaded way to prevent tracking lost and
scale ambiguity problems. Results on multiple datasets show
that SiT-SLAM yields a marked improvement in robustness
and localization accuracy in complex scenarios, e.g., RMSE
error is reduced from 26.36m with the classic ORBSLAM3
method to 6.94m on the KITTI-09.

Index Terms— Relative Pose Estimation, SLAM, Cam-
era Pose Estimation, Cross Attention

1. INTRODUCTION

Relative Camera Pose Estimation (RCPE) is a long-standing
problem in computer vision and robotics, which refers to cal-
culating the translation and rotation between two frames with
overlapped regions. RCPE is also essential to visual Simul-
taneous Localization and Mapping (vSLAM). Notably, the
tracking process of vSLAM is a series of RCPEs. In prac-
tice, the RCPE scenarios include wide-baseline and narrow-
baseline cases in terms of overlapping regions and pose differ-
ences between two images. However, existing RCPE meth-
ods mainly focus on wide-baseline cases and barely cover the
narrow-baseline case. Moreover, their robustness and local-
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Fig. 1. Left: map of ORB-SLAM3[1]. Right: the tracking
failure is fixed by our proposed SiTPose.

ization accuracy are dramatically reduced in complex scenar-
ios, including significant perspective changes, motion blur,
texture-repeating, textureless regions, etc.

Traditional methods accomplished this task by extract-
ing pixel-level interest points (e.g. [2, 3, 4, 5] ) from a pair
of input images, then establishing 2D-2D correspondences
between keypoints and finally using 8-point[6] algorithm or
less points[7] to recover the Fundamental matrix. RANSAC
is very often used to eliminate wrong matches. However,
these methods have limited effectiveness in handling com-
plex environments such as low-texture, repetitive textures, ex-
posure variations, etc. The ill performance of this technique
makes point-based vSLAM prone to tracking failure in com-
plex scenarios. To solve this problem, dual-SLAM[8] pro-
poses a bidirectional SLAM strategy, which reduces track-
ing failures by a dramatic 88%. ORBSLAM3[1] makes it
run for a long time by introducing orbslam-atlas[9], this way
can greatly improve the robustness of SLAM, but the accu-
racy cannot be guaranteed. Overall, this methodology still
depends on feature point matching and cannot effectively ad-
dress the problem. Recently, learning-based methods have
shown promising progress. For instance, RelPoseNet [11]
and RPNet [12] achieve direct regress relative pose by propos-
ing a siamese neural network upon a pose regression module.
[13] maps the rotation to the probability distribution for the
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Fig. 2. SiTPose consists of three parts: a siamese feature extractor, a feature encoder based on CCT[10], and a pose regressor.

wide-baseline case. [14] introduces the 8-point algorithm as
an inductive bias for relative Pose Prediction. In addition,
[15] scale-consistent depth prediction by combining absolute
scale and relative depth. [16, 17] using video sequences to
predict camera pose. However, these methods still need to be
more suitable for highly complex scenes, such as extremely
wide-baselines (rotation > 150 and with little overlapping re-
gions, an example is shown in Fig. 3). An important reason is
that the siamese structure adopted by the above methods lacks
feature interaction in the process of feature extraction.

Wide- and Narrow-Baseline Case: The original meaning
of the baseline refers to the distance between the optical cen-
ters of the two cameras in the stereo vision system. However,
here we define two cases in terms of overlapping regions and
pose differences between two images: wide-baseline cases
and narrow-baseline cases. The wide-baseline refers to the
rotation and translation between the image pairs that have
large changes and the overlapping area is small. The narrow-
baseline cases mean that the rotation between neighboring
frames is slight but the translation varies greatly and the over-
lapping area is large. Unlike the wide-baseline case, the dif-
ficulty with the narrow one lies in the high similarity of the
input image pairs. With the vigorous development of au-
tonomous driving, the camera (vision-based perception) has
become a mainstream sensor, and the narrow-baseline situa-
tion has become inevitable. However, existing methods are
adverse to handling this situation (see Fig. 3) since they ne-
glect the relevance between the image pairs. Their simple
weight-sharing siamese network can not effectively distin-
guish different features of similar inputs, failing to estimate
the narrow-baseline cases accurately. Based on the above ob-
servation, We propose SiTPose to directly regress the rotation
and translation of a frame pair. With a siamese cross-attention
feature extractor, it can effectively preserve image interac-
tions at different scales. In addition, a modified attention-
based feature encoder is added based on the siamese network
to better leverage the cross information between image pair
features. Finally, we introduce metric learning to guide the
extractor in learning the different features of the input pair of
images. By entirely using the interactive information between

Wide-baseline

R: 161.22° T: 8.66cm
R: 1.285° T: 1.56cm

R: 175.47° T: 32.35cm

R: 1.965° T: 1.69cm

Narrow-baseline

R: 0.36° T: 16.63cm

R: 0.27° T: 7.80cm

8-Points

SiTPose

Fig. 3. Extreme cases. left: KITTI[18], right: 7scenes[19].
SiTPose has obvious advantages over SOTA 8-points[14].

image pairs, SiTPose achieves robust performance in various
complex scenes.

Succinctly, the main contributions are as follows: 1)
We propose a siamese framework, SiTPose, with a cross-
attention feature extractor and a compact transformer encoder
for RCPE, which yields highly robust and accurate to both
wide- and narrow-baseline cases. 2) Benefiting from SiT-
Pose’s excellent prediction ability for extreme cases, we ex-
tended SiTPose to geometry-based Monocular SLAM and
proposed SiT-SLAM, which addresses the problems of tra-
ditional vSLAM that are prone to tracking lost and scale am-
biguity.

2. SITPOSE

2.1. Architecture

Our goal is to predict the rotation R ∈ SO(3) and translation
T ∈ R3 between two images with overlapping regions. This
mission requires robust and accurate estimation of two related
images under various conditions, such as wide-baseline cases
and narrow-baseline cases. Therefore, it not only requires the
model to be able to find the relationship between two images
with low similarity but also to be qualified to distinguish and
exploit the differences between two similar images.

The SiTPose architecture is illustrated in Fig. 2. Our
model consists of three modules: a cross-attention feature ex-
tractor, a compact feature encoder, and a pose regressor.

Cross-attention feature extractor adopts a siamese net-
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Fig. 4. Cross multi-head attention

work structure, utilizing the first seven layers of ResNet34 as
the backbone to preserve sufficient feature information. To
better extract the relevance between two images in the fea-
ture extraction process, we design a Cross Transformer Block
(CTB). Similar to ViT[20], it consists of Layernorm, MLP
blocks, and an attention layer. The main difference is that we
proposed a cross multi-head attention (CMHA) layer to re-
place the traditional multi-head attention (MHA) layer [21].
We insert CTB as residuals at different convolutional levels to
better interact with the two branches of the siamese network.

Compared with MHA, CMHA needs to accept two
queries Q, two Keys K and two values V from two features
as input (see Fig. 4) and output two refined features for the
siamese backbone. It can be formulated as follows:

A1 = softmax
(
QcurKref

⊤/
√
Dh

)
Vref

A2 = softmax
(
QrefKcur

⊤/
√
Dh

)
Vcur

. (1)

where the subscripts cur and ref represent the two image
features after convolution and Dh is the dimension of each
head. After reshaping, A1 and A2 can be sent to the siamese
network as residuals.

A Residual block (consisting of 3×3 convolutions, batch
normalization, and ReLU activation) is added after the
siamese structure for feature fusion. Meanwhile, we intro-
duced metric learning at the end of the siamese network to
guide the extractor to better extract different features.

In terms of compact feature encoder design, followed
by CCT[20], we use standard learnable 1D position embed-
dings and a 14-layer transformer encoder (consisting of multi-
headed self-attention layer, MLP layer, and apples Layer-
Norm before every block).

The output sequence of the transformer encoder contains
relevant information across different parts of the input patches
and preserving this information can improve performance.
We proposed dual-SeqPool based on CCT. It fully preserves
the relevant information of the original sequence and the en-
coded sequence. This module can be viewed as a learnable
weight distribution method that transforms the output of the
transformer encoder from Rb×n×d to Rb×1×d :

x′
in = softmax

(
f (xin)

T
)
∈ Rb×1×n

x′
out = softmax

(
g (xout)

T
)
∈ Rb×1×n

. (2)

where xin ∈Rb×n×d is the output of the feature extractor af-
ter reshaping, and xout ∈Rb×n×d is the output of the 14-layer
transformer encoder. f and g are both linear layers which
transfer Rb×n×d to Rb×n×1. Assigning these two weights to
the output can be formulated as follows:

x = α · x′
inxout + (1− α) · x′

outxout ∈ Rb×1×d . (3)

where x′
inxout and x′

outxout can be viewed as a weighted as-
signment of spatial order importance from the input and out-
put of the transformer encoder, and α is a learnable coefficient
that was initially set to 0.1.

The last part is the pose regression module, it predicts
rotation (in quaternion form) and translation (in real units)
through two fully connected layers.

2.2. Loss
Siamese network is usually applied to learn the similarity of
two images, whereas we use it to extract the relevance and
difference of relative images in our mission. In the vehicle
case, narrow-baseline image pairs are often highly similar (as
shown in Fig. 3 left). This situation generates similar feature
extraction results from the two images by the siamese network
and leads to a decrease in prediction accuracy. Inspired by
[22], we design a loss function based on the contrastive loss
to alleviate this problem. We use the pose difference as the
margin to guide the feature extractor to increase the distance
between the two groups of features as much as possible:

dif = ∥(q∗ref × qcur − qcur )∥2 + ∥(tref − tcur )∥2
dis = ∥(fref − fcur )∥2

. (4)

where qref , qcur, tref and tcur are the rotation (in quaternion)
and translation true values of the input two images, q∗ref is the
conjugate quaternion of qref . fref and fcur are the outputs
of the feature extractor flattened into 1D vector. dis is the
Euclidean distance between fref and fcur. Based on dis and
dif , the loss function can be formulated as follows:

lossML =
1

N

N∑
n=1

max{(α · dif − dis) , 0} . (5)

where α is a positive constant to balance dis and dif , and we
set it to 16 and 4.5 for outdoor and indoor scenes empirically.

Our training process is divided into three steps. First, we
use l2 MSELoss for training. Then, we use l1 Geodesic Loss
for retraining after MSEloss stabilizes, where the Geodesic
Loss is the magnitude of the vector from prediction to ground
truth pose. Finally, we introduce lossML to further improve
the performance.

2.3. Implementation

Our source code will be released at https://github.com/cong-
yang/SiTPose. The backbone (ResNet-34) was pre-trained
using the ImageNet dataset and the rest weights of SiTPose
are initialized by Xavier[23]. The backbone is then truncated
into three parts as the feature extractors of three branches.



Each branch generates a feature map with a size of 512×7×7.
Inspired by the architecture of co-attention[24], we insert
CTB as a residual at each truncation. After fusion, the feature
extractor finally generates a 384 × 4 × 4 feature map. Our
feature encoder is implemented based on CCT-14. We use a
single RTX 3090 with 24G GPU memory for training. The
model is implemented in PyTorch, and lietorch was extended
for backpropagation of Geodesic loss. We choose the Adam
optimizer to train the network, and the weight decay is 10−5.
We train the network with a learning rate of 10−3 and 10−5

for MSE Loss and Geodesic Loss, respectively. The batch
size is set to 64 and the whole training process takes around
36 hours in practice.

2.4. SiTPose with vSLAM

vSLAM is an incremental system, and RCPE can be naturally
integrated into vSLAM as a part. We fuse SiTPose with tra-
ditional monocular vSLAM to solve two problems: 1. Track-
ing failures are prone to occur in complex environments. 2.
monocular vSLAM scale ambiguity. We integrate SiTPose in
a multi-threaded way on the basis of ORBSLAM3[1].

For tracking failure, ORBSLAM3 adopts the following
strategy: the first step is relocation. Until relocation failure,
a new submap will be created as an active map, and the pre-
vious map will be reserved as a nonactive map to wait for
subsequent loop-closing detection to merge related submaps.
However, in vehicle cases, this strategy usually fails, resulting
in wasted frame information during relocation. In response to
the above problems, we integrate SiTPose into ORBSLAM3
to solve the tracking failure problem.

Our processing flow is shown in Fig. 5. The starting
points are where the tracking starts, and the breaking points
are where the tracking lost occurs. Under our strategy, when
tracking lost occurs, our model will quickly create a second
submap by 2D-2D matching while relocating. When the num-
ber of keyframes in the second submap reaches 3, we de-
liver the last keyframe (KF1) of the previous submap and the
first keyframe (KF2) of the current submap to the SiTPose
thread for estimating rotation and translation. When the cur-
rent submap is stable (the number of keyframes reaches 14),
We set the pose of the KF2 :

TKF2 = T1T2, T1, T2 ∈ SE(3) (6)
where T1 is the pose of KF1, and T2 is the result predicted
by SiTPose. We subsequently propagate this modification to
the remaining 13 frames of the second submap and merge the
two submaps using the predicted pose from SiTPose.

To complete the fusion of the two submaps, a problem
that has to be solved is the scale consistency of the two maps.
The monocular feature point method (such as ORBSLAM3)
usually uses the method of setting the median value of the tri-
angulated restored spatial point to 1 for scale normalization.
However, this method lacks a constant scale standard, which
not only fails to restore the true scale but also causes the fail-
ure of map merging due to the inconsistency of the scale for

starting point

map 1

map 2 merged map

SiTPose result

breaking point

merge

Fig. 5. SiT-SLAM process.

multiple submaps. We use SiTPose as the annotation for scale
recovery during initialization and scale the median depth of
the spatial point to the prediction result of SiTPose. This op-
eration is shown as follows:

medianDepth =
1

med(z1, z2, ..., zn)
× Dpre

Drun
. (7)

where med(z1, z2, ..., zn) is the median value on the z-axis of
the spatial point recovered by triangulation, Dpre is the value
of translation predicted by SiTPose, and Drun is the corre-
sponding value of ORBSLAM3 at running time with Dpre.
Finally, we integrate the above operations into ORBSLAM3,
which greatly improves its ability to address tracking failures
in the case of complex scenarios. The visualization results are
shown in Fig. 6.

3. EXPERIMENTS

3.1. Dataset

We generate image pairs dataset on two two benchmark
datasets: the 7-Scenes[19] and the KITTI[18] datasets. All
images are resized to 224× 224.

7-Scenes is a collection of tracked RGB-D camera frames
of seven indoor environments. All scenes were recorded from
a handheld Kinect RGB-D camera at 640 × 480 resolution.
We use the same image pairs generation strategy as [25]. The
generated dataset contains a large number of wide-baseline
situations, and the mean values of rotation and translation are
29.7260° and 1.0468m, respectively.

KITTI is a large-scale outdoor autonomous driving
dataset. Contains real image data collected from scenes such
as urban areas, rural areas, and highways. It is the most au-
thoritative and popular dataset in the field of visual SLAM.
We generate image pairs for the narrow-baseline case on
KITTI. Specifically, the interval between the image pairs we
generate is 1-5 frames. In the generated dataset, the mean
values of rotation and translation are 1.7947° and 2.8631m,
respectively.
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Fig. 6. The visual results of ORBSLAM3 and ORBSLAM3 with SiTPose on sequences 05, 00, 09, 15, and 18 of KITTI are
presented in (a), (b), (c), (d), and (e), respectively. We set a breaking point on each sequence, based on the criterion that the
number of matched feature points is insufficient.

3.2. Comparison and Ablation study

We compare SiTPose with four baselines. First, we compare
with the classical methods RPNet[12] and RelPoseNet[11],
these two methods both employ a simple Siamese network
structure. The second is Planeformers[26], a sparse recon-
struction method, it uses RCPE as a subtask, and we take its
RCPE part out for comparison. The last one is the latest work
[14], a ViT-based RCPE network using 8-point algorithm as
inductive bias. We show the average translation and rotation
errors on the KITTI and 7Scenes datasets (as shown in Table
1). Our method is far ahead of other baselines, especially in
translation errors (on the 7Scenes dataset, it is less than 1 cm).
We found that SiTPose’s superior prediction accuracy mainly
depends on its ability to handle extreme cases. Like the ex-
ample shown in Fig. 3, there are 101 rotation errors greater
than 150° in the 8-point[14] prediction results, while SiTPose
has only one on the 7Scenes dataset.

Table 1. Translation and Rotation Performance on KITTI
and 7Scenes, our method is the best among the five baselines.

7Scenes KITTI
R(deg) T(cm) R(deg) T(cm)

RelPoseNet [11] 3.81 7.26 1.71 124.51
RPNet [12] 4.79 8.51 1.80 127.00

PlaneFormers [26] 1.81 5.06 0.51 13.11
8-points [14] 1.56 4.30 0.45 11.13

ours 0.92 0.77 0.35 6.25

We performed ablation experiments to prove the effec-
tiveness of each module of our model. We use CNN Pose
Regressor (a modified ResNet34 with the first seven layers
extended as a siamese network) as a starting point for abla-
tion experiments. All modules are introduced in Sec 2. The
ablation study results are presented in Table 2. It can be seen
that: (1) the performance increases when more components
are used for RCPE, indicating the contribution of each part.
(2) The geodesic loss based on Lietorch will guide the model
to achieve better prediction accuracy. In addition, we provide
the inference time of each module of SiTPose (see Table 3).

Table 2. Ablations study on KITTI and 7Scenes. Average
translation error (°) and rotation error (cm) is reported.

7Scenes KITTI
R(deg) T(cm) R(deg) T(cm)

CNN Pose regressor 1.42 1.46 1.31 12.93
+ Feature Encoder 1.26 0.98 0.76 8.16
+ CTB 1.17 0.94 0.76 7.64
Transfer to GeoLoss 0.94 0.77 0.38 6.26
+ Metric Learning 0.92 0.77 0.35 6.25

Table 3. Inference time of each module of SiTPose, reported
from 1000 samples on RTX3090.

SiTPose
Feature extractor Feature Pose
CTB resnet34 Encoder Regressor

time(s) 12.82 1.27 7.33 4.06 0.05

3.3. SLAM with SiTPose

To demonstrate the superiority of monocular SLAM inte-
grated with SiTPose in the face of complex situations, we
compared SiT-SLAM with ORBSLAM3 on i5-12500. We se-
lected a breakpoint on each sequence based on the number of
successful feature point matches on the KITTI dataset. Quan-
titative analysis is shown in Table 4, and the visualization re-
sults are shown in Fig. 6. It can be seen that the advantage of
SiT-SLAM lies in the recovery ability to tracking lost.

Table 4. SiT-SLAM and ORBSLAM3 on KITTI dataset.
We use RMSE and median error as criteria. The ground truth
of sequence 10-18 are obtained by stereo ORBSLAM3.

Seq
SiT-SLAM ORBSLAM3

median(m) RMSE(m) median(m) RMSE(m)

00 6.52 7.51 10.47 12.13
05 8.56 7.56 8.25 12.76
09 6.10 6.94 20.39 26.36
13 5.38 6.46 13.71 14.34
15 4.47 4.88 8.69 14.44
16 7.15 7.90 8.03 10.34
18 4.90 5.69 9.39 10.58



4. CONCLUSION AND FUTURE WORKS

In this paper, we introduce SiTPose, a novel approach that
exhibits comparable robustness in both narrow- and wide-
baseline scenarios and significantly enhances accuracy com-
pared to previous methods. The superior performance of SiT-
Pose highlights the significance of interactive features for im-
age pairs. Besides, we demonstrate the successful integra-
tion of learning-based RCPE with traditional vSLAM in SiT-
SLAM, which greatly improved the robustness of monocular
vSLAM in the face of complex situations. Future research
avenue can be directed towards enhancing the speed of SiT-
Pose and investigating better fusion strategies to improve its
performance in challenging scenarios.
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