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Abstract We propose a novel and fast 3D object matching framework that is able

to fully utilise the geometry of objects without any object reconstruction process.

Traditionally, 3D object matching methods are mostly applied based on 3D models.

In order to generate accurate and proper 3D models, object reconstruction methods

are used for the collected data from laser or time-of-flight sensors. Although those

methods are naturally appealing, heavy computations are required for segmentation

as well as transformation estimation. Moreover, some useful features could be fil-

tered out during the reconstruction process. On the contrary, the proposed method is

applied without any reconstruction process. Building on stripes generated from laser

scanning lines, we represent an object by a set of stripes. To capture the full geometry,

we describe each stripe by the proposed robust point context descriptor. After repre-

senting all stripes, we perform a flexible and fast matching over all collected stripes.

We show that the proposed method achieves promising results on some challenging

real-life objects.
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1 Introduction

Determining the similarity between 3D objects is a fundamental task for many

robotic and industrial applications [1, 2] such as 3D shape retrieval, face morphing,

and object recognition [3]. A challenging aspect of this task is to find suitable object

signatures that can be constructed and compared quickly, while still discriminating
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Fig. 1 Pipeline of the traditional object representation and matching

between similar and dissimilar objects. With traditional approaches [4–6], accurate

and proper 3D models [7–9] are firstly reconstructed to feature the geometrical and

textural properties of objects. Specifically, as shown in Fig. 1, the first step is the

object scanning via time-of-flight cameras [10] or laser scanning systems [11]. After

that, the scanned object is represented by some special formats (e.g. point cloud) [12]

with a filtering process to remove outliers and noise. Finally, original surfaces from

3D scans are reconstructed into an object model using meshes or other formats. For

object matching, 3D features are generated at a certain 3D point or position in space,

which describe geometrical patterns based on the information available around the

point. Finally, the similarity between two 3D objects is calculated based on object

matching.

However, it shares some challenges with the pipeline of traditional approaches.

For object reconstruction, some heavy computation costs may be required depending

on the outliers in point clouds and tasks at hand. Specifically, Due to the background

clutter and measurement errors, certain objects present a large number of shadow

points. This complicates the estimation of local point cloud 3D features. Thus, some

of these outliers should be filtered by performing a statistical analysis on each point’s

neighbourhood, and trimming those which do not meet a certain criteria [12]. This

filtering process normally calls for a large number of calculations. Moreover, if the

point cloud is composed of multiple scans that are not aligned perfectly, a smoothing

and re-sampling process is also required. In addition, during the outlier removing

process, some fine-grained features could be filtered out.

For object matching, in order to find reliable feature point correspondences, some

high-order graph matching frameworks are employed to establish feature correspon-

dences, combining both appearance similarity and geometric compatibility [13–15].

Although those methods have been successfully applied in 2D image features, lim-

ited prior art refers 3D surfaces. The main reason is that a 3D surface is not repre-

sented in the Euclidean 2D domain, and therefore distances between two points on

the surface cannot be computed in a closed form [16]. Moreover, computing object

similarity using correspondences normally requires high computational complexity
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Fig. 2 Pipeline of the proposed representation and matching methods

(e.g. the most commonly used Hungarian algorithm [17] needs O(n3) time complex-

ity, where n is the number of feature points) since each feature point in one object

should be assigned to a point in another object.
1

Thus, it is hard to be applied in real

time.

In order to solve the above problems, we present a method that is able to efficiently

represent a 3D object using scanning stripes without any reconstruction process.

With this, similarity between objects can be calculated directly using vector dis-

tance methods [19, 20] with low computational complexity. Specifically, as shown

in Fig. 2, instead of object reconstruction using point clouds, we represent an object

into a set of stripes which are collected from laser scanning lines. In order to capture

the full geometry of an object, we process and describe each stripe by the proposed

point context descriptor. After representing all stripes, we perform a flexible and fast

matching over all collected stripes. Since the collected scripts are naturally ordered

by the moving direction of a scanning laser, stripes can be easily matched based on

their relative locations. With this property, our matching task is applied in real time

without any heavy stripe corresponding process.

The most significant scientific contributions of this paper include: (1) We propose

a novel and efficient stripe-based object representation method without any 3D object

reconstruction process. (2) In order to fully capture the geometrical properties of

each stripe, we introduce an intuitive and robust point context descriptor. (3) We

introduce a fast matching method for calculating the similarity between two stripe

sets. This approach is applied without any corresponding process and the matching

complexity can be reduced dramatically. (4) The experiments show that some objects

with similar shapes can be classified accurately using the proposed method.

1
In some matching tasks, partial feature points could be jumped using dummy points like in [18].
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2 Related Work

3D object reconstruction with range data is widely covered in literatures together

with a good overview given in [21]. In order to capture the geometrical and sur-

face features of 3D objects, two types of approaches are proposed. The first one is

to preserve the fine-grained features of objects by combinations of atomic shapes,

generalised cones and super-quadrics [22, 23]. However, such approaches could not

robustly handle real world imagery, and largely failed outside controlled lab envi-

ronments. In order to solve these problems, researchers introduce more and more

geometric structure in object class models and improve their performance [24, 25].

Moreover, objects can also be represented as collections of planar segments using

CAD models and lifted to 3D with non-rigid structure-from-motion [26]. The sec-

ond one is to preserve the coarse-grained features of objects by combining multiple

simple shapes to obtain object models [27]. This idea is further improved to the level

of plane- and box-type models [28, 29]. Though most works [28–30] indicate that

both fine- and coarse-grained models can help one to better guess the 3D layout

of an object while at the same time improving 2D recognition, those methods nor-

mally require high computing time for processing and analysing 3D surfaces since

most surfaces rarely have simple parametrisations. In addition, since 3D surfaces can

have arbitrary topologies, many useful methods for analysing other media have no

obvious equivalent for surface models. On the contrary, as we directly employ the

scanning stripes for object representation, the proposed method is applied without

any 3D reconstruction process.

For object matching, the biggest challenge is the large non-rigid deformations

of object surfaces. In applications such as facial expression recognition, there are

localised, high-degree of freedom deformations. To tackle this problem, two types of

approaches are normally employed [16, 31]. The first one obtains dense feature point

correspondences by embedding the surfaces to a canonical domain which preserves

the geodesics or angles [32, 33]. Such embedding requires an initial set of feature cor-

respondences or boundary conditions. However, it is difficult to find reliable feature

point correspondences and consistent boundary conditions. Furthermore, since most

surface deformations are not perfectly isometric, solely considering intrinsic embed-

ding information may introduce approximation errors to the matching results. There-

fore, Zeng et al. propose an approach to achieve robust dense surface matching via

high-order graph matching in the embedding manifold [13, 16]. Specifically, they use

multiple measurements to capture the appearance and geometric similarity between

deformed surfaces and high-order graph interaction to model the implicit embed-

ding energy. As these approaches require high computational complexity for opti-

mising high-order graphs, they are hard to be applied in real time. The second type

is to represent 3D models using skeletons and then skeleton matching approaches are

employed for matching objects [18, 34]. However, as skeletonisation methods [31,

35] are normally sensitive to noise, the generated skeletons require an extra skeleton

pruning process [36]. Moreover, similar to the feature point matching approaches,

skeleton matching is built on skeleton graphs which require expensive computational
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time for search correspondences. Different from the aforementioned approaches, the

proposed method calculates the similarity between objects without any correspond-

ing process since the generated stripes are naturally ordered. Therefore, our method

can be applied in real time.

3 Stripe Generation

In this section, the stripe generation method is introduced. The stripe generation is

done with a robot guided 2D laser scanner (see Fig. 3a), which was developed for

the modiCAS [37] project at the University of Siegen. The original purpose of this

system is to assist medical personnel in a surgical environment to acquire the patients

face anatomy, to perform intra-operative patient registration, surgical navigation and

placement of medial tools.

As shown in Fig. 3b, the laser scanner is build up from a commercial 3D stereo-

vision system, developed by the company Point Grey, which is normally used for

marker based tracking. To extend this system to a high resolution laser scanner, a

line laser module is rigidly attached to one of the two integrated cameras of the

stereo-vision system. Afterwards a camera calibration is done to calculate the intrin-

sic camera parameters, which are needed to correct distortions caused by the camera

lens. At least the laser scanner is calibrated with a special calibration device for cor-

rect distance measurement. The achieved measurement accuracy of the laser scanner

is less than 0.3 mm.

For a measurement with the laser scanner the line laser module is used to project

a laser line to the object surface and the reflection of the laser then is detected by the

camera. Due to the characteristic of the objects surface, the laser line is deformed in

the acquired camera image. From this deformation, and the knowledge of the camera

Line laser 
module

Coordinate system 
of the stereo vision 

system

Coordinate system 
of the laser scanner

X

Y
Z

X

Y
Z

(a) (b)

Fig. 3 The laser scanning system and its components. a The modiCAS system, b Components
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parameters and the triangulation angle between the camera and the line laser module,

the distance between the camera and the object surface can be calculated.

To ensure a solid detection of the reflected laser line in the camera image, it is nec-

essary to avoid any influences from background light. To suppress any background

light, an optical bandpass filter, which is designed to only let light around a wave-

length of 650 nm pass through, is mounted in front of the camera lens used. With

the help of such a filter the laser line is the brightest object in the camera image and

can be detected easily. For this, in every column of the image array the start and the

end of the laser line are detected by an adjustable threshold. Afterwards, the correct

position of the laser line in each column is calculated using a weighted average of

the intensity values of the laser between the threshold borders.

For the acquisition of the laser lines, the laser scanner is mounted to the robot arm

with the help of a rigid fast coupling and a hand-eye calibration is done to calculate

the transformation matrix between the coordinate systems of the optical system and

the robot flange. Afterwards, the objects are placed one after another on a table,

with a distance of approximately 60 cm between the table and the laser scanner,

and the laser scanner is moved with the robot arm along the object’s surface with

a homogenous speed, so the distance between the laser lines is constant over the

whole object’s surface. The density of the laser lines on the object surface can be

affected by the moving speed of the robot arm.

After completion of the data acquisition the detected laser lines are saved in an

array, which is transferred from the camera control PC to the user PC. For further

processing, the found line positions are recalculated to black/white images. The cal-

culated distance values are not needed for this project. Figure 4 shows an example

of the original object (Fig. 4a) and its collected stripes (Fig. 4c). For comparison, a

3D model of the original object is illustrated in Fig. 4b. We can observe that the pro-

posed stripe descriptor is more simple than the 3D model. Moreover, considering the

generation speed, the proposed descriptor is much faster than 3D models. Here we

only illustrate the stripes from one side of the surface. To capture the full geometry,

we can conduct multiple scans while changing the object’s pose. However, experi-

Fig. 4 An apple and its 3D model and generated stripes (partly). a Original object, b 3D model,

c Collected strips
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Fig. 5 The proposed

descriptor for a stripe C

ments in Sect. 6 show that even with the single-side stripes, matching performances

are still promising. Thus, the complete scanning strategy is applied based on different

applications.

4 Stripe Representation

For a given stripe, we describe its geometrical and topological properties by the

point context descriptor. Specifically, given a stripe C with H points, for every point

pi ∈ C, i = 1, 2,… ,H, we consider both the distance and direction of the vector form

pi to other points in C. Then, the mean distance and direction are calculated for stripe

representation. Moreover, in order to distinguish the straight line-similar stripes, the

normalised
2

stripe length l is also employed for stripe description. Thus, a stripe is

represented by a three-dimensional feature vector. The proposed descriptor has many

characteristics: (1) It is simple and intuitive. (2) It integrates both geometrical and

topological features of a stripe. (3) It is flexible for stripe matching since it can be

adopted to different matching algorithms.

More specifically, as shown in Fig. 5, given a stripe C with point sequence

C = p1, p2,… , pH , we compute two matrices, one presenting all distances and the

second one representing all pairwise orientations of vectors from each

pi to each pm ∈ C,m = 1, 2,… ,H. The distanceE(i,m) from pi to pm is defined as the

Euclidean distance in the log space:

E(i,m) = log(1 + ‖⃖⃖⃗pi − ⃖⃖⃖⃗pm‖2) . (1)

We add one to the Euclidean distance to make the E(i,m) positive. The orientation

𝛩(i,m) from pi to pm is defined as the orientation of vector ⃖⃖⃗pi − ⃖⃖⃖⃗pm:

𝛩(i,m) = ∠(⃖⃖⃗pi − ⃖⃖⃖⃗pm) ∈ [−𝜋, 𝜋] . (2)

2
Here we normalise a stripe length H by the mean length of all stripes in an object.
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Based on Eqs. 1 and 2, a stripe C is encoded in two H × H matrices E and 𝛩. Since

the matrix E is symmetrical, we only extract its lower triangular part for calculating

the mean distance d. For the matrix 𝛩, as its absolute values are symmetrical, we

extract the upper or the lower triangular part which has more positive values and

calculate the mean orientation o. Finally, together with the normalised stripe length

l, a stripe C is represented by:

C = [l, d, o] . (3)

5 Stripe Matching

Let A1 and A2 denote sets of stripes from two objects O1 and O2, respectively. Ci and

C′
j denote a single stripe in A1 and A2, i = 1, 2,… ,N, j = 1, 2,… ,M. For notational

simplicity we assume that N ⩽ M. Our aim is to calculate the similarity between O1
and O2 using their stripe sets. As each stripe is represented by a three-dimensional

feature vector, we calculate the similarity between O1 and O2 using the properties of

each feature distribution.

Specifically, for two objects O1 and O2, we first remove some redundant stripes

from A2 to ensure they have the same number of stripes N. In order to do so, we

remove the rounding number (M − N)∕2 stripes from two ends of A2. For example,

we remove the stripes {C′
1,… ,C′

(M−N)∕2} and the stripes {C′
N−((M−N)∕2)+1,… ,C′

N}.

The rationale behind this is (1) Stripes which are close to the boundary have less

influence on the global structure of an object. (2) Most objects have symmetrical

structures. (3) This strategy can avoid the removing of some crucial stripes which

have major contribution for object distinction. With the above step, A1 and A2 have

the same number of stripes N. With the original order, we renumber the index of

stripes in A2 as:

A2 = {C′
1,C

′
2,… ,C′

N} . (4)

As each stripe can be represented by a three-dimensional feature vector Ci =
[li, di, oi], C′

i = [l′i , d
′
i , o

′
i], we capture the distribution of each feature by its feature

values in all stripes. Then the distance between O1 and O2 can be calculated by

Bhattacharyya distance [20]. Specifically, let l, d and o denote the distributions of

all feature values in A1. l′, d′ and o′ denote the distributions of all feature values in

A2. For example, l = [li, l2,… , lN] and l′ = [l′1, l
′
2,… , l′N]. Assume K = {l, d, o} and

K′ = {l′, d′, o′}, the distance between O1 and O2 is calculated by

s(O1,O2) =
1
3

3∑

t=1
𝜆tDB(K(t),K′(t)) (5)

where 𝜆 is the weight for fusing three features and DB(K(t),K′(t)) denotes the Bhat-

tacharyya distance between two feature distributions, e.g. DB(K(1),
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K′(1)) = DB(l, l′). In practice, 𝜆 can be searched using the heuristic method of Gra-

dient Hill Climbing integrated with Simulated Annealing [38]. Specifically, the Gra-

dient Hill Climbing [39] method starts with randomly selected parameters. Then it

changes single parameters iteratively to find a better set of parameters. A fitness

function then evaluates whether the new set of parameters performs better or worse.

The Simulated Annealing strategy [40] impacts the degree of the changes. In later

iterations, the changes to the parameters are becoming smaller. With our preliminary

experiments, we set 𝜆1 = 0.6, 𝜆2 = 0.3 and 𝜆3 = 0.1 for three features. Furthermore,

the Bhattacharyya distance DB(l, l′) is calculated by:

DB(l, l′) =
1
4
ln( 1

4
( 𝜎

2
l

𝜎

2
l′
+

𝜎

2
l′

𝜎

2
l
+ 2)) + 1

4
( (𝜇l−𝜇l′ )2

𝜎

2
l +𝜎

2
l′
) (6)

where 𝜎 and 𝜇 are the variance and mean of a feature distribution, respectively. Simi-

lar to DB(K(1),K′(1)), DB(K(2),K′(2)) = DB(d, d′) and DB(K(3),K′(3)) = DB(o, o′)
can also be calculated with Eq. 6.

6 Experiments

In this section we first introduce the dataset we used for the experiments. After that,

we evaluate and compare the performance of the proposed method with some tra-

ditional methods to illustrate our advantages. Lastly, we analyse the computational

complexity of the proposed method. The experiments in this paper are performed on

a laptop with Inter Core i7 2.2 GHz CPU, 8.00 GB memory and 64-bit Windows 8.1

OS. All methods in our experiments are implemented in Matlab R2015a.

6.1 Dataset

To validate the idea of our proposed method on real-life objects, we organised a

dataset namely Daily100 from daily life. The Daily100 database includes 100 objects

with 10 classes, such as apple, banana, book, chips, chopstick, egg, orange, pear,

pen and bottle cap (the first row in Fig. 6). For each object, we also generated and

collected its correlated stripes and shape for the experiment. From Fig. 6 we can see

that some objects (e.g. apple and orange) are really difficult to be distinguished using

only their shapes.
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Fig. 6 Sample objects of the proposed Daily100 dataset. The first row illustrates the original

objects. The second and third row show the sample stripes and shape of each object, respectively

6.2 Experiment Performance

Based on the Daily100 dataset, we perform two experiments within the object

retrieval frame work. Specifically, in the first experiment, we compare the global

object retrieval performances between stripes and shapes. In the second experiment,

more detailed comparisons in each object class are illustrated and discussed.

Table 1 depicts the matching performance of the proposed method and other

shape-based approaches. We use each object as a query and retrieve the 10 most

similar objects among the whole dataset. The final value in each position is counter

values that are obtained by checking retrieval results using all the 100 objects as

queries. For example, the fourth position in the row of our method shows that from

100 retrieval results in this position, 89 objects have the same class as the query

objects. We can clearly observe that the proposed method achieves the best results

among all the other methods. The main reason is that since most objects have similar

shapes (e.g. apple, orange and bottle cap), it is hard to distinguish them using only

their shape features. Different from the shape features, the proposed method captures

and preserves deformations on object surfaces using stripe sets. Thus, the proposed

method can distinguish objects even if their shapes are similar.

Table 1 Object retrieval comparison between the proposed method and shape-based approaches:

Shape Context (SC), Inner Distance (ID) and Path Similarity (PS)

1 2 3 4 5 6 7 8 9 10

SC [41] 100 79 84 71 75 74 64 67 58 48

ID [42] 100 80 77 70 68 68 64 66 54 41

PS [18] 100 81 79 78 76 71 65 60 55 53

HF [43] 100 80 71 67 64 54 52 43 49 51

Our 100 95 91 89 86 77 73 72 66 63
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Table 2 Comparison of mean matching accuracy (%) in each class

Apple Banana Book Chips Chopstick Egg Orange Pear Pen Cap

SC [41] 46 100 79 73 87 77 51 79 100 28

HF [43] 53 82 48 61 51 43 54 97 100 30

Our 100 78 48 100 100 96 84 100 42 64

In order to perform a more detailed analysis of object matching, we report the

mean matching accuracy in each object class in Table 2. In this table, the mean accu-

racy is calculated by the matching accuracy on each query object. Specifically, we

use an object as the query and retrieve the 10 most similar objects among the whole

dataset. Within these 10 objects, we count how many objects have the same class as

the query object. The matching accuracy of the query object is then calculated by

the ratio between the matched objects and 10. We use all the 100 objects as queries

and calculate the mean accuracy for each class. In Table 2, we can observe that for

most classes, our method achieves the best accuracy. For example, since apple, egg,

orange and bottle cap have a very similar shape, the performances of shape-based

methods in these classes are not promising. As the collected stripe sets have different

geometrical properties in these classes, our method achieves the best performance.

However, considering the classes of banana and pen, our method performs worse

than the shape-based approaches. The main reason is that since both banana and

pen have very similar surface deformation, the proposed stripe-based approach can-

not robustly distinguish them using only stripes. In order to improve the accuracy,

a proper combination of shape descriptors and the proposed stripe descriptor can

improve the matching accuracy over the individual descriptor.

6.3 Computational Complexity and Runtime

We now analyse the computational complexity of the proposed hierarchical skeleton

generation and matching approaches. (1) For stripe set generation, the time com-

plexity is in the order of O(Nl), where N is the number of stripes on each object

and l is the mean stripe length. This is because our stripe can be directly gener-

ated from laser scanning lines. Thus, for each stripe, we only need O(l) for thin-

ning and noise removing. (2) For stripe representation, since we generated the point

context descriptor using sample points along the stripe path, the time complexity

is O(H2) where H is the number of sample points. Considering there are multiple

stripes for each object, the global complexity for object representation is O(NH2).
(3) For object matching, as we directly employ the Bhattacharyya distance on three-

dimensional vectors, the complexity is O(3). However, for each dimension, we need

to calculate the mean value on the distance and orientation matrix, the global com-

plexity for object matching is O(3H). Thus, the total complexity of our method is
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O(Nl) + O(NH2) + O(3N). By dropping the constant number, our time complexity

is bounded by O(Nl) + O(NH2).
Here we report the computation time based on the Daily100 dataset with the

experimental environment introduced above. On average, the shape resolution in

this dataset is 600 × 712. For each object, the mean stripe number is 140. Together

with object representation and matching, the proposed method takes 0.0375 h while

the Shape Context [41] method takes 1.6223 h. Thus, our method can dramatically

reduce the runtime while achieving promising matching accuracy. However, please

notice that our code is not optimised, and its faster implementation is possible by

optimising loops, settings and programming language, etc. Thus, there are still plenty

of opportunities to reduce the running time.

7 Conclusion and Future Work

A novel 3D object matching method based on the similarity of stripes is presented.

The most significant contribution of this paper is the novel approach to 3D object

matching. We represent an object as a set of stripes which are directly collected

from laser scanning lines. The distance between objects is computed using the Bhat-

tacharyya distance based on stripe features. The proposed approach does not require

any complicated strategies for 3D object reconstruction as well as the feature point

corresponding. Thus, our method can dramatically reduce computational complex-

ity for 3D object matching. In addition to low time costs, our method achieves a

promising performance on some challenging objects compared to the traditional 2D

shape-based approaches. In the future, we will try to optimise our stripe collection

strategy for adapting hand-hold laser scanning devices. Moreover, we will compare

our approach to other 3D object matching methods.
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