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ABSTRACT

In shape-based object matching, it is important how to fuse similarities between points on a shape
contour and the ones on another contour into the overall similarity. However, existing methods face
two critical problems. Firstly, since most contour points are involved for possible matchings without
taking into account the usefulness of each point, it causes high computational costs for point matching.
Secondly, existing methods do not consider geometrical relations characterised by multiple points.
In this paper, we propose a shape-based object matching method which is able to overcome these
problems. To counteract the first problem mentioned, we devise a shape descriptor using a small
number of interesting points which are generated by considering both curvatures and the overall shape
trend. We also introduce a simple and highly discriminative point descriptor, namely Point Context,
which represents the geometrical and topological location of each interesting point. For the second
problem, we employ high-order graph matching which examines similarities for singleton, pairwise
and triple relations of points. We validate the robustness and accuracy of our method through a series
of experiments on six datasets.

c© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Object matching is a process for identifying a specific object

in a digital image or video. As an expressive abstraction of the

visual pattern of an object, shape is being used in many applica-

tions to understand or identify objects in images [1, 2]. Among

many existing shape-based object matching methods [3], one

of the most popular approaches is contour-based shape match-

ing consisting of the following two processes. The first pro-

cess is shape representation where the contour of a shape is

represented using a set of descriptors, each of which describes

the characteristics of a point on the contour (for short ’con-

tour point’). The second process is shape matching which ex-

tracts correspondences among contour points in two shapes by

comparing descriptors of those points. The overall similarity

is computed by aggregating similarities between corresponding

points in terms of their descriptors.

For the shape representation, there are three main challenges.

The first challenge is how to extract efficient descriptors that are

invariant to shape rotation, translation and scaling. The second

one is how to extract shape descriptors that are robust to noise

and distortions. This is known as the robustness requirement.

The third challenge is how to generate descriptors with a low
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computation complexity. In order to solve these problems, one

possible way is to use the simple geometry descriptors such

as [4, 3], since they have low computational complexity and

most of them are robust to noise and distortions. However,

these descriptors have limited description power due to the lack

of information. Another possibility is to use some rich descrip-

tors [5, 6, 7, 8] which have higher description power. Although

most of them are invariant to shape rotation, translation and

scaling, they need to sample many contour points to precisely

represent its characteristics. Hence, using rich descriptors in-

curs high computational costs for extraction and matching.

Fig. 1: Shapes are composed by different regions.

We assume that the main reason for the high computation

costs is the lack of consideration of how useful each contour

point is. Therefore, we represent the shape with only a small

number of interesting points, each of which is defined as a con-

tour point that represents a rigid region of a shape. More specif-

ically, shapes are normally composed of different regions (Fig-

ure 1) and some regions are likely to be deformed when some

changes occur in the shape. However, some regions are resilient
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against shape deformations like the bird’s head, bone ends or

the handle of a hammer in Figure 1. We regard such a region

as rigid, and model it as a region which is deviated from the

overall shape trend. As interesting points are mainly detected

in the rigid regions, they are robust to shape deformation. For

example, in Figure 2(a), the two end regions of a bone are more

stable than its middle part, and our method can ensure that the

locations of those interesting points are more stable and simi-

lar in the same class rather than different classes. Based on the

interesting points, we can dramatically reduce the computation

costs for descriptor generation and matching.

(a) Interesting points (b) Singleton potential

(c) Pairwise potential (d) Third-order potential

Fig. 2: Different potentials for object matching.

Since we only use a limited number of interesting points to

represent the whole shape, each interesting point should carry

both global and local shape features. Therefore, for each in-

teresting point, a simple and intuitive descriptor, namely Point

Context, is proposed to capture its geometrical and topological

features. Specifically, a point context is generated by consid-

ering both lengths and orientations from each interesting point

to other contour points. This descriptor expresses the config-

uration of the entire shape relative to the interesting point. In

addition, by normalising point contexts in terms of lengths and

orientations, they become invariant to shape rotation and trans-

lation. Thanks to such point contexts integrated with interesting

points, our method features a high discriminative power while

keeping low computational complexity.

For the shape matching process, even using the proposed

point contexts, it is inevitable that several interesting points are

falsely matched (the right bone in Figure 2(a)). Moreover, some

interesting points in the same object may have very similar ge-

ometrical locations because of their small distances or sym-

metry. To overcome this, one possible way is to avoid those

points which are below a threshold of similarity value during

the correspondence-based matching [9, 10, 11]. Another way

is to jump over those similar points by adding dummy points in

another object [5, 12]. However, even these methods only con-

sider the relationship between single points. This could lead to

ambiguous matching because many different points may have

similar descriptors [13, 2].

Compared to the above-mentioned methods, we aim to con-

sider the geometric relations among multiple points using

high-order graph matching, which is an approach to match

two graphs by extracting the correspondences of multiple

nodes [14]. We adopt this approach by considering nodes as

interesting points described by point contexts. As shown in

Figure 2(b), singleton point matching is a well-known assign-

ment problem where the interesting point is matched with one

point in another shape. For the pairwise matching (Figure 2(c)),

it finds consistent correspondences between two pairs of inter-

esting points by taking into consideration both how well their

descriptors match and how similar their pairwise geometric re-

lations are. For the high-order matching (mostly third-order,

see Figure 2(d)), it considers the cost of matching three corre-

spondences. More specifically, a triple of interesting points in

a shape are matched with the one in another shape. With this

observation, we propose a high-order graph matching strategy

for improving the extraction of correspondences between inter-

esting points.

The main contributions of this article include (i) the introduc-

tion of a novel shape descriptor with robust interesting points

and their point context descriptors, (ii) the implementation of

a high-order graph matching algorithm that solves the shape

matching problem and (iii) the design of potential functions for

different orders. Our method is validated through a series of

object retrieval experiments on five datasets demonstrating its

robustness and accuracy.

2. Related Work

Shape descriptors generally look for effective and perceptu-

ally important shape features. Common simple descriptors like

area, circularity, etc. can only discriminate shapes with large

differences [3]. They are frequently used as filters or combined

with other richer shape descriptors to enhance their discrimina-

tion power.

For some richer descriptors, the skeleton-based method [5]

normally generates the shape descriptor through some skele-

tonisation and pruning methods to achieve a visually promis-

ing skeleton [15]. Shape Invariants [7] is a shape descriptor

based on integral kernels. It describes a shape in an implicit

form and is characterised by a series of isotropic kernels that

provide desirable invariance properties. Shape Context [6] is a

descriptor of contour points with histograms in which bins are

uniformly divided log-polar space. Since those methods do not

know which contour point is useful for matching, they need to

use a large number of contour points to achieve accurate corre-

spondences and alignments. Thus, all of the above-mentioned

descriptors incur high computational complexity. In this paper,

we propose to use only a limited number of interesting points.

These and their associated point contexts can efficiently reduce

the matching complexity while keeping the crucial shape ge-

ometry and topology.

Other descriptors like Discrete Curve Evolution [16] can sim-

plify the original shape into a hierarchy of polygons, and ver-

texes of each polygon at a layer are defined as interest points.

However, since these interest points highly rely on the pa-

rameters which control the degree of shape simplification, the

method needs manual parameter tuning to achieve accurate
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matching. Liu et al. proposed some methods [17, 18] to detect

the corner points by visual curvatures under different scales.

Though those corner points are robust to fine-grained deforma-

tions and can be used as the interesting points, this method also

requires a curvature threshold for point detection. Moreover,

the proposed interesting point detection method is detected by

considering both curvatures and overall shape trend.

For shape matching, Hausdorff distance [19] is a classical

matching method where the distance of two point sets is nor-

mally calculated by both the maximal and minimal distance be-

tween point pairs. Hence, this method is sensitive to noise and

slight variations. Belongie et al. proposed a correspondence-

based shape matching method using shape contexts [6] wherein

the matching of two shapes is done by matching their point his-

tograms. Bai et al. proposed a skeleton-based shape match-

ing method which uses the Hungarian algorithm to find the best

match of skeleton endpoints in terms of their geodesic paths [5].

However, for all these matching methods, they only consider

the singleton constraints among each corresponding points. In

order to improve the accuracy, Leordeanu et al. proposed a

spectral technique for matching problems using pairwise con-

straints [20] where the correspondence is established through

preserving the structure similarity across two point sets. Nev-

ertheless, this strategy could lead to substantial loss of perfor-

mance since every pair of interesting points trivially defines a

line which is repetitive and similar to each other. Therefore,

instead of the singleton or pairwise, Zass et al. proposed to

match interesting points using hyper-graphs [21] which are go-

ing beyond the pairwise. Specifically, each interesting point

set is modelled by a hyper-graph where the relations between

points are represented by hyper-edges. A match between the

interesting point sets is then modelled as a hyper-graph match-

ing problem. Due to the theoretical advance and empirical suc-

cess, hyper-graph matching has attracted increasing attention

and many methods have been proposed [22, 23, 24, 25] and

the references therein. However, it is unclear which potential

functions are suitable for our interesting point matching tasks.

Moreover, it is also interesting to explore the performances of

different hyper-graph matching algorithms. Thus, we propose

the singleton, pairwise and third-order potential functions for

the 2D interesting point matching problem. In addition, we

compare the matching performance between the employed and

other hyper-graph matching algorithms.

3. Shape Descriptor

In this section, we first describe our method which generates

robust interesting points along the shape boundary. After that,

point context is introduced and analysed.

3.1. Interesting Points

We consider the problem of selecting a set of interesting

points {pi}
N
i=1

from a given shape Ω. We assume that distinctive

contours like the legs or the tail of an elephant are characterised

by a high curvature towards the overall shape trend. Based on

this idea, we compute the distance between each single contour

point and its closest reference point. Here, a reference point is a

point that is inside the shape and characterised with the highest

distance to the contour. By arranging these values sequentially,

a sequence s is generated where interest points characterised by

high curvatures are detected as peaks.

Since noises on a contour could have adverse influence on

interesting point detection, we first perform polygonisation to

suppress noises without removing significant parts of the con-

tour. For this purpose, the well-known Douglas-Peucker tech-

nique [26] is recursively applied to the object’s contour. Then,

the contour is converted into a polygon P.

Having P, the reference points xi (residing inside the

shape) can be detected by utilising a fast marching method

(FMM) [27]. We employ FMM for reference point detection

since it is convenient to use while delivering a high accuracy

result. The approach is initialised with the whole polygon (in-

terpreted as a set of points) leading to a distance map T . This

map provides the distance from each pixel to the closet contour

point on P, as shown in Figure 3.
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(c) Bird

Fig. 3: The distance map T of a bone, a person and a bird.

Reference points are then discovered at maximum value lo-

cations in T . To find reference points that appropriately cover

the whole shape, we iteratively mask T and detect regions from

which reference points are extracted. This masking is carried

out using the following dynamically adapted threshold µ(BG):

µ(BG)
= φ(T (Ω)) − 2 · ψ(T (Ω)) , (1)

where φ(·) returns the maximum value inside T restricted to

the area of Ω and ψ(·) indicates the standard derivation. Here,

another option is to use φ(·) mean instead of maximum as max-

imum is an unstable statistic compared to mean. However, it

leads to less stability in interesting point detection and worse

shape retrieval results in our preliminary experiments. The

main reason is that reference points should be discovered at the

maximum value in the most prominent regions in T . If µ(BG)

is assigned with the φ(·) mean value, some irrelevant regions

could be involved due to the low threshold µ(BG). By masking

T with µ(BG) in Eq. 1, we can emphasise the most prominent

regions for which reference points should be obtained while re-

moving the other irrelevant regions. In particular, the former

regions are clustered into disjoint regions Ai. For each of these

regions, a reference point is determined as a weighted centroid

where the weight of a contour point is its value in T .

All input T t=1
i

(where i = [1, 2, . . . , |Ct−1|]) are multiplied

with the original T t=0. Consequently, t = 0 detected area is

alleviated while new ones are stressed. This pixelwise multi-

plication, depicted as T t=1 ◦ T t=0. A new threshold µ(BG),t=1 is

computed using T t=1 ◦ T t=0, so that a new region At=1
i

and the

corresponding reference point Ct=1 (i.e. weighted centroid) is

detected. The algorithm terminates if Ct
= ∅ and the final set is

generated by R =
⋃t

j=0 Ct= j.
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Finally, we conduct the following two types of filtering to

eliminate meaningless reference points. First, none of the ref-

erence points are allowed to be too close to the shape’s centroid,

which is ensured by the threshold µ(cog). If only one reference

point xi ∈ R is violating this constraint, all reference points are

discarded except for the responsible one. Second, in presence

of multiple reference points, the contour has to be split into sub-

parts. During this separation, the algorithm monitors that each

xi is only assigned to one region. If one or two regions are as-

signed, the point will be removed. This strategy can ensure xi

only represents one region of the shape. Moreover, it is easier

to sample the contour points sequentially in the next steps.

We now have R which is the set of reference points that

passed the above-mentioned filtering. Using R, we aim to com-

pute the distance between each contour point on the shape and

its closest reference point. This is done by FMM which uses R

as seed points and outputs T ( f inal). By sequentially aggregating

values corresponding to contour points in T ( f inal), we obtain a

sequence s where each element represents the distance between

a contour point and its nearest reference point. Based on s, we

can extract interesting points which have a high influence on

the perceptual appearance of the shape. Figure 4 shows both

the T ( f inal) values of the contour and their signal plots. Please

notice that the bone structure yields two reference points so that

the contour has been separated into two parts (first and second

column).
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Fig. 4: Example of sequences representing distances between contour

points and their closest reference points. The colours on the contour

line encode the distance from a pixel to its closest reference point.
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Fig. 5: Sequences obtained by smoothing sequences in Figure 4 (each

smoothed sequence corresponds to the middle part of the sequence).

It is obvious that the noise-to-signal ratio degrades the peak

detection with imprecise interesting point detection. Thus, s is

smoothed using a Low Pass Filter (LPF) based on a Fast Fourier

Transform (FFT). Figure 5 shows sequences smoothed by ap-

plying LPF to the ones in Figure 4. Here, the LPF is estab-

lished with a Gaussian coefficient mask that is applied to the

zero-shifted frequency domain.

Before LPF, the sequence is padded at the start and at the end

to alleviate border artifacts. This padding is needed for shapes

that are separated into several parts like the bone in Figure 4.

For such a shape, without padding, contour points at boundaries

of parts could be falsely detected as interesting.

Finally, we detect interesting points as peaks in the smoothed

sequence ŝ. Each peak is identified as a point where the first-

order derivative (ŝ′) of ŝ is zero, and the second-order (ŝ′′) is

positive or negative. Please note that the computation of the

second-order derivative only considers a signed binary version

of the first-order derivative (sign(ŝ′), where sign(·) returns 0 if

ŝ′
i
= 0, 1 if ŝ′

i
> 0 and −1 otherwise). As shown in Figure 6,

the naive approach which locates interesting points based on

ŝ′′ = 0 may cause several false-positives that multiple interest-

ing points are located within a very short distance. To avoid

such false-positives, a distance threshold µ(sdi f f ) is applied to

ŝ′′. If the distance between adjacent peaks is below µ(sdi f f )
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Fig. 6: A situation where the sigma of the Gaussian filter has not been

chosen appropriately. It is obvious that these artifacts can be easily

determined by analysing the second-order derivative. The red circles

indicate the problem.

coupled with a low height difference (taken from ŝ), the power

of the LPF is dynamically decreased. With the lower smooth-

ing power, the procedure is repeated with the original sequence

s until the peak distance constraint is fulfilled. Finally, based on

these validated peaks, we can extract interesting points which

highly indicate shape characteristics.

3.2. Point Context

Inspired by [28, 29], we propose the point context descrip-

tor which represents each interesting point pi, (i = 1, 2, ...,m)

based on its geometrical and topological location. We consider

the set of vectors originating from pi to all other sample points

on a shape contour. These vectors express the configuration of

the entire shape relative to pi. Theoretically, instead of con-

tour sample points, we can form vectors only using interesting

points. However, we will not employ this strategy for the fol-

lowing reasons: (1) It will lose some coarse- and fine-grained

features since the number of interesting points is limited. (2)

It will reduce the robustness of point context since our method

may fail to locate interesting points on some characteristic con-

tours. This causes the dramatic change of the point context. (3)

The major computation time derives from matching interesting

points rather than the vector computation in point context ex-

traction. Therefore, the difference of computation time between

the two strategies can be ignored.

Let P denote a sequences of interesting points P =

{p1, · · · pm} and Q denotes a finite number of contour sample

points Q = {q1, · · · , qn}, P < Q. All points in P and Q are
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represented by their coordinate locations. Points in Q are or-

dered clockwise along the shape contour. For pi, we com-

pute two vectors, one presenting the distance of pi to each

qk ∈ Q(k = 1, · · · , n), and the second representing the orien-

tation of the vector from pi to qk. A distance Dpi (k) from pi to

qk is defined as Euclidean distance in the log space

Dpi (k) = log(1 + ‖
−→
pi −

−→
qk‖

2) . (2)

In order to avoid the divergence of log, we add one to the Eu-

clidean distance. An orientation Θpi (k) from pi to qk is defined

as the orientation of vector
−→
pi −

−→
qk:

Θ
pi (k) = atan2(

−→
pi −

−→
qk) . (3)

where atan2 stands for the four quadrant inverse tangent which

can ensure Θpi (k) ∈ [−π, π]. Together with the distances, a sin-

gle interesting point pi is encoded as two n-dimensional vectors

Dpi and Θpi .

The proposed point descriptor is different from the methods

in [13] and [6]. Firstly, we only consider the feature vectors

on the basis of interesting points instead of uniformly or ran-

domly selecting sample points. This strategy can reduce the

mismatches and computational complexity conspicuously. Sec-

ondly, the proposed point descriptor is naturally translation and

scaling invariant since the distance between point contexts is

computed by normalising Dpi (k) and Θpi (k) (see Eq. 8). In ad-

dition, we generate the point context features by the Euclidean

distance and the four quadrant inverse tangent methods; their

values remain the same even a shape is rotated. Thus, the pro-

posed descriptor is also rotation invariant. On the contrary, ap-

proaches in [13, 6] are not intrinsically rotation invariant be-

cause each point is characterised by the tangent angle which is

ineffective for some points for which no reliable tangent can be

computed.

Finally, given an arbitrary shape Ω, its contour ∂Ω can be

represented with the locations as well as the distance and orien-

tation vectors of all contour interesting points:

∂Ω = {pi,D
pi ,Θpi } . (4)

4. Shape Matching Based on High-order Graph Matching

In this section, using interesting points described by point

contexts, we firstly formulate shape matching as high-order

graph matching consisting of potential functions with different

orders. Then, we introduce the definition of each potential func-

tion. Finally, we explain a method which can efficiently find the

optimal matching on high-order graphs.

4.1. Formulation

Let P1 and P2 denote sets of interesting points from two

shapes S 1 and S 2 respectively. pi and p′
j

denote a single in-

teresting point in P1 and P2 respectively. P , P1 × P2 denotes

the set of possible correspondences. We define the following

boolean indicator:

xa =















1 if a = (pi, p′j) ∈ P is a correspondence

0 otherwise
. (5)

In our definition, a basic constraint is that each point pi in P1 is

mapped to at most one point p′
j
in P2, while for each point p′

j
in

P2 there is at most one point pi in P1 mapped to it. Therefore,

we have the set of constraints:

ζ = {x ∈ {0, 1}P1×P2 |
∑

pi∈P1

xpi ,p
′
j
6 1,

∑

p′
j
∈P2

xpi ,p
′
j
6 1,

∀pi ∈ P1 and ∀p′j ∈ P2}

. (6)

Inspired by [24, 30], our high-order (degree 3) matching for-

mulation is formulated as the following optimisation problem:

min
x∈ζ

{E(x|θ) =
∑

a∈P

θa xa +

∑

(a,b)∈P×P

θab xa xb+

∑

(a,b,c)∈P×P×P

θabc xa xb xc}
. (7)

where θ is the whole set of matching costs that we consider and

consists of the following three components: θa is the matching

cost for each correspondence a ∈ P (Figure 2(b)), θab for a pair

of correspondences (a, b) ∈ P × P (Figure 2(c)), and θabc for a

triplet of correspondences (a, b, c) ∈ P × P × P (Figure 2(d)).

Since the matching constraint in Eq. 6 makes the optimisation

problem in Eq. 7 difficult to solve, we will introduce a method

that decomposes the problem in Eq. 7 into several sub-problems

in Section 4.3.

4.2. Potential Functions

We only consider the first and third order terms for the fol-

lowing reasons. Firstly, although singleton potential causes

mis-matching of interesting points due to the lack of their topo-

logical relations, they still offer the major contribution to ex-

amine overall shape characteristics. Secondly, since we already

consider point contexts of interesting points in singleton po-

tential, it is redundant to consider them for pairwise potentials.

Thus, we adopt to define pairwise potentials based only on rel-

ative location relations of interesting points. However, our pre-

liminary experiment showed that such pairwise potentials have

low discriminative power, and many different pairs of points

have similar descriptors. Hence, we have decided not to use

pairwise potentials. Lastly, as discussed in [24], higher-order

potentials make it possible to build more expressive features.

This was also confirmed in our preliminary experiment, where

triplets representing relative locations of three interesting points

have a high discrimination power, even without considering

their point contexts. This way, by assigning the similarity com-

putation of point contexts only to singleton potential, we keep

the computational cost of high-order graph matching as low as

possible.

4.2.1. The Singleton Potential

We define the singleton potential θa for the correspondence

(pi, p′
j
) between two interesting points pi and p′

j
, using their

point contexts. We first compute the affinity vectors between

the corresponding elements in their distance and orientation

vectors:

Ak
D(pi, p′j) = exp(−

(Dpi (k) − D
p′

j (k))2

(max(Dpi )σ)2
) . (8)
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Ak
Θ

(pi, p′j) = exp(−
(Θpi (k) − Θ

p′
j (k))2

δ2
) . (9)

where k represents the dimension index of n-dimensional vec-

tors Dpi and Θpi (or Dp′
j and Θp′

j ) where each dimension in Dpi

(or Dp′
j ) and Θpi (or Θp′

j ) represent the distance and orientation

of pi (or p′
j
) to the k-th sample point, respectively. σ and δ are

parameters to control the tolerance of distance and orientation

differences, respectively. We set σ = 0.2 and δ = π/4 in all

experiments. We calculate the Ak
D

and Ak
Θ

for n sample points

and get two n-dimensional vectors AD(pi, p′
j
) and AΘ(pi, p′

j
). To

make the value of AD(pi, p′
j
) invariant to scale changes, we di-

vide each distance difference by the maximal distance in the

first distance vector.

Since both AD and AΘ are normalised, we can simply add

them to obtain the affinity vector:

A(pi, p′j) = AD(pi, p′j) + AΘ(pi, p′j) . (10)

The overall similarity between pi and p′
j
can be calculated as the

mean value of A(pi, p′
j
). Consequently, the singleton potential

for the correspondence (pi, p′
j
) is defined as

θa = θpi ,p
′
j
=

1

n

n
∑

k=1

A(k) . (11)

4.2.2. The Third-Order Potential

We define a third-order potential using angles which are

formed by a triplet of interesting points. Suppose that P1

and P2 are the set of interesting points for two shapes S 1 and

S 2, respectively. For any two triplets, (p1
i
, p1

j
, p1

k
) ∈ P1 and

(p2
i
, p2

j
, p2

k
) ∈ P2, the third-order potential for each possible

triple matching (p1
i
, p1

j
, p1

k
) → (p2

i
, p2

j
, p2

k
) is defined with a trun-

cated Gaussian kernel:

θabc = θp1
i
,p1

j
,p1

k
,p2

i
,p2

j
,p2

k
=















exp(−γ‖ fi1 , j1 ,k1
− fi2 , j2 ,k2

‖2) if ‖ fi1 , j1 ,k1
−fi2 , j2 ,k2

‖6ϑ

0 otherwise

(12)

where fi1, j1,k1
(or fi2, j2,k2

) is the three-dimensional vector which

describes sine values of three angles formed by (p1
i
, p1

j
, p1

k
) (or

(p2
i
, p2

j
, p2

k
)). Points in such a triplet are ordered in a clockwise

fashion where p1
i

or p2
i

are starting points. We use the truncated

Gaussian kernel to scatter and reduce matching times since the

number of possible triple matching is huge and it is not neces-

sary to compute them completely. We set γ to 2 in our experi-

ment. With Eq. 12, for each triplet in P1, we find the triplets in

P2 in a neighbourhood of size ϑ.

Based on [24] and our preliminary experiments, we only

sample 20 triangles per interesting points in P1. There are sev-

eral possible strategies to select triangles depending on user in-

tentions. If the aim is matching with deformation allowance,

the triangle should be selected at small scales. On the other

hand, if one wants to capture the global property of a shape, the

triangles should be big enough. According to this, we select the

triangle based on the distribution of interesting points. If points

are densely located in some regions (like the bone in Figure 2),

more triangles are sampled in those regions. Otherwise, trian-

gles are sampled randomly. Then, with the same strategy, we

select the triangles of P2, and compute their descriptors. We

employ a kd-tree to store them efficiently.

4.3. Formulation Dual-Decomposition

In Eq. 7, we formulate interesting point matching as a high-

order graph matching problem combining both extrinsic sim-

ilarity and intrinsic embedding information (interesting point

triangles). The matching is achieved by globally optimising

Eq. 7 which includes the cost of the deformation as well as the

cost of correspondences according to multiple cues. In order to

obtain a globally optimal or near optimal solution while reduc-

ing the complexity without searching for all possible matching

correspondences, we re-formulate Eq. 7 into sub-problems and

reduce the high-order terms in Eq. 7 to quadratic terms.

Specifically, we first employ the dual-decomposition

method [31] to re-formulate Eq. 7 into sub-problems that are

easier to solve. We define a sub-problem for each type of po-

tentials, that is, E1(x|θ1) =
∑

θaxa (θ1
= θa) and E2(x|θ2) =

∑

θabcxaxbxc (θ2
= θabc). Based on this definition, let v denote

the index of one of V (= 2) sub-problems. Under this setting,

we approximate the original problem in Eq. 7 as the following

linear combination of sub-problems:

E(x|θ) =
∑

υ∈I

ρυEυ(x|θυ) . (13)

where ρυ is the weight for each sub-problem and used to control

its importance. In our case, using the heuristic method of Gra-

dient Hill Climbing integrated with Simulated Annealing [32],

we set ρ1 = 0.7 and ρ2 = 0.3 for the first and third-order sub-

problems, respectively. This means that we put a higher pri-

ority on matching of overall shape characteristics based on the

singleton potentials. Then, the original problem is solved by

iteratively updating potentials θv and their interrelated corre-

spondences (xa or xaxbxc) of each sub-problem υ while fixing

potentials and correspondences for the other sub-problems.

In order to solve the first-order sub-problem, we employ the

Hungarian algorithm which is a method to solve the linear as-

signment problem [10]. For each interesting point pi in S 1,

the Hungarian algorithm can find its corresponding interesting

point p′
j

in S 2 based on their similarity value in Eq. 11. For

the third-order sub-problem, we first employ the high-order re-

duction method [33] to reduce the high-order terms in Eq. 7 to

quadratic terms. Then, the original problem in Eq. 7 can be

solved by QPBO algorithm [34].

Essentially, Eq. 7 is a standard optimisation problem which

could be solved by many existing methods like HGM [21] and

RRWHM [22]. Similar to the employed dual-decomposition

method, these methods are designed for high-order graphs. In

Section 5.3, we compare the matching performance between the

proposed method and other high-order matching approaches.

Moreover, Monte-Carlo based methods [35] could also be em-

ployed to search the optimal correspondences, since random

sampling is not burdensome as we only have a limited num-

ber of interesting points in each shape. In Section 6, we will

discuss this extension as our future work.

5. Experimental Results

In this section we first evaluate the proposed interest point

detector and point context on different datasets. After that, we
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evaluate and compare the performance of the proposed match-

ing method with some traditional methods to illustrate our ad-

vantages. Lastly, we compare our method to the related ones

on three datasets. The experiments in this paper are performed

on a laptop with Inter Core i7 2.2GHz CPU, 8.00GB memory

and 64-bit Windows 8.1 OS. All methods in our experiments

are implemented in Matlab R2015a.

5.1. Evaluation of Interest Point Detection

To evaluate the effectiveness of our interest point detector, we

use a standard dataset Kimia216 [5] consisting of 216 objects in

18 classes. Our evaluation is based on the retrieval framework,

where each shape is used as a query, and the 10 most similar

shapes are retrieved from the whole dataset. We evaluate the

performance of a method by checking retrieval results using all

216 shapes as queries, and counting how many retrieved shapes

belong to the same class of their queries. The similarity value

between each shape and its query is calculated using the inter-

esting point matching method in Section 4.2. Since the per-

formance of interest point detection is tightly coupled with the

end goal of matching, the similarity values are calculated and

compared by using the same point descriptors and the match-

ing algorithm. Built on this, the influence of point descriptor

and matching algorithm can be minimised by keeping the only

variable: point detection methods. Thus, our experiments are

more targeted to the performance of interesting point detection

methods.

We compare our interesting point detection method to the

most related DCE [16] and corner detection [17]. DCE method

detects interesting points by considering the polygon convex

during the iterative polygon simplification. In Corner detection

method, a contour point is described both by its visual curva-

tures and corresponding scales. In a certain scale, they con-

sider the points of which their digital visual curvature is above

a threshold DK0 as interesting points. Based on the gener-

ated interesting points, we compare retrieval performances of

our method and the other two methods using the same descrip-

tors, shape context [6] and our proposed point context. As dis-

cussed in Section 2, DCE requires a stop parameter k to con-

trol polygon simplification. For a fair comparison, we tried

several parameters from k = 3 to k = 15 and chose k = 10

which achieved the best retrieval result for comparison. In cor-

ner detection method, we employ their mentioned threshold

DK0 = 17π/64(48◦).

Table 1 presents the performance comparison between our

interesting point detection method and two other methods. The

results in this table are collected by checking retrieval results

using all the 216 shapes as queries. For example, the fourth po-

sition in the row of IP1 shows that from 216 retrieval results in

the forth position, 184 shapes belong to the same class as their

query shapes. We can observe that retrieval results based on

the proposed interesting point detector perform better on both

descriptors. The main reason is that the property of interest-

ing points generated by the DCE method is highly related to the

stop parameter k. Obviously, it is impractical to set an appropri-

ate k manually on each object. Similar to DCE, corner detection

method also detects the interesting points based on the visual

curvature which is higher than the threshold DK0. Since this

threshold is not general for all the shapes in this dataset, some

interesting points could be mis-detected. On the contrary, our

method can generate stable points with no sensitive parameter.

Table 1: Experimental comparison on Kimia216 dataset. SC: Shape

Context [6] descriptor, PC: The proposed point context descriptor,

IP1: Interesting points detected by DCE method [16], IP2: Interest-

ing points detected by visual curvature method [17], IP3: Interesting

points detected by the proposed method.

SC 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

IP1 216 210 195 184 181 172 161 146 148 128

IP2 216 205 195 190 187 179 180 170 171 161

IP3 216 212 206 197 191 190 186 186 183 171

PC 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

IP1 216 211 205 196 192 191 186 178 177 175

IP2 216 210 205 203 194 188 179 170 160 155

IP3 216 212 211 211 205 200 201 195 193 195

5.2. Evaluation of Point Context

In order to evaluate the performance of the point context de-

scriptor, we compare the retrieval performance using it to the

ones employing other most related descriptors, Shape Context

(SC) context [6] and PCCS [13]. For an interesting point, the

shape context [6] method extracts descriptors as the diagram of

the bins which are uniformed in log-polar space. The PCCS

method considers interesting points as the contour partition

points; then, the shape is represented as the fused shape con-

text descriptor on interesting points and contour segment de-

scriptors. In this experiment, we use MPEG400 dataset which

consists of 400 objects categorised in 20 classes. The shapes

in this dataset have large intra-class variations and inter-class

similarities. Except for the descriptors, all performances are

obtained using the same interest points based on our proposed

method and are matched by the Hungarian algorithm.

Table 2: Experimental comparison of our point context descriptor

to the Shape Context (SC) [6] and partition points-based descriptors

(PCCS) [13] using the interesting points generated by our proposed

method on MPEG400 dataset. The matching algorithm on all the three

methods is the Hungarian algorithm.

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

SC 370 343 310 302 277 272 265 264 239 240

PCCS 377 351 336 331 317 302 287 282 273 262

Our 391 377 372 364 356 343 338 319 304 276

Table 2 illustrates the experimental comparison between

three descriptors and the point context descriptor achieves the

best performance. The presentation format of Table 2 is the

same as the one of Table 1, except for the fact that 400 query

shapes are used in Table 2. It is clear that PCCS performs bet-

ter than SC, since PCCS considers not only SCs on interest-

ing points, but also the geometrical features on contour seg-

ments. However, compared to PCCS, point context performs

better since it is generated by taking both distance and orienta-

tion features for measuring the distribution of relative positions

from an interesting point to the sample points.
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5.3. Evaluation of High-Order Matching

In this section, we quantitatively illustrate the performance

of the proposed high-order graph matching method. First of

all, we visually compare the performance of high-order graph

matching to the traditional Hungarian method [10] and the

state-of-art method in [13] using the same objects. In Figure 7,

we match two hands with deformations on some fingers us-

ing only the first-order potentials (i.e. matching among single

points by Hungarian algorithm) and its combination with the

third-order potentials. As shown in Figure 7(a), there are some

mismatched interesting points because of the similar points in

both shapes. Moreover, the geometrical relations among the

interesting points are not considered. Figure 7(b) shows that

the proposed high-order matching method yields appropriate

matching. Since there are more interesting points in the left

hand than the right one, with our constraint in Section 4.1, some

points in the left hand will be left out.

In Figure 7(b), we can clearly observe that an interesting

point in the right hand (the bottom right corner) is not prop-

erly detected. This is because we detect interesting points by

considering both curvatures and the overall shape tend. If a

corner point and some contour points have similar distances to

a reference point, the corner point could be removed during the

sequence smoothing steps. Because of this, we can find that

the interesting point in the left hand (the bottom right corner)

could not be found as a proper corresponding. As a result, it is

assigned to another point to meet the singleton and high-order

constraints. It also influences the correspondences of its ad-

jacent points. Thus, the proposed method has erroneous cor-

respondences around the wrist area. This problem could be

solved by enriching the type of interesting points and setting

up a threshold to remove the ambiguous correspondences.

(a) Only the first-order (b) The first and third-order

Fig. 7: Object matching with different potentials. We can observe that

the high-order potential performs better.

Fig. 8: Comparing the matching result of the proposed method (right)

to the method in [13] (left).

In Figure 8, we compare the matching results in [13] to the

proposed high-order matching approach. Depending on human

perception, there are several mismatched points in Figure 8(a).

The main reason is their symmetric silhouette which renders

several points difficult to match based on single-point match-

ing. In contrast, as shown in Figure 8(b), with the point context

feature and our proposed matching approach, all points in the

left tool are correctly matched to the right one.

Next, we quantitatively evaluate the improvement of match-

ing accuracy by our high-order graph matching method. For

this, we use the Kimia99 [36] database which contains images

of 9 categories of objects, with 11 images per species for a total

of 99 images. Table 3 depicts the comparison between incor-

rect correspondences found using only the first-order potentials

(i.e. using the Hungarian algorithm) and those found using the

higher-order methods. Using interesting points detected by our

method, we first count the total number of correspondences be-

tween shapes in the same class. The values in the second col-

umn in Table 3 illustrate the total number of correspondences

in each class. After that, we apply the Hungarian and different

high-order matching methods independently and collect the in-

correct correspondences between shapes in the same class. The

values in the third and the last columns present the total num-

bers of incorrect correspondences using the Hungarian and the

proposed method, respectively. The values in the fourth and

the fifth columns are generated using the HGM [21] and the

RRWHM [22].

We can observe that the RRWHM method achieves a perfor-

mance close to our approach while the HGM has the lowest per-

formance among the three high-order matching methods. The

main reason is that the HGM method is unable to effectively in-

corporate with the matching constraints during its approxima-

tion stage. Different from HGM, the RRWHM method works

with the mapping constraints in the approximation stage which

can effectively reflect the one-to-one matching constraints dur-

ing the random walks for higher-graph matching. Overall, Ta-

ble 3 indicates that high-order matching methods can signifi-

cantly improve the shape matching performance and reduce the

number of incorrect matches.

Table 3: Experimental comparison of incorrect correspondences be-

tween the Hungarian and high-order matching methods in each class.

Class Total Hungarian HGM RRWHM Our

animal 1070 270 261 166 176

bunny 852 115 84 4 14

dude 1034 157 178 83 94

fish 414 49 62 27 28

hand 1319 497 286 180 180

hat 712 193 140 78 82

key 947 1 0 0 0

plane 1120 450 292 213 203

tool 718 130 85 18 26

5.4. Performance Comparison to State-of-the-art Methods

Kimia99 Database: Table 4 shows the performance compar-

ison between the proposed method and the most famous meth-

ods like Inner Distance (ID) [8], Shape Context (SC) [6] and

Path Similarity (PS) [5]. These methods are commonly used

for shape matching with different descriptors. We can clearly

observe that the proposed method performs better than the ID

and SC methods while being close to the best results from the

PS method in this database. The main reason is that skeletons

employed in the PS method are perfectly pruned with human
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interaction. In contrast, the whole process of our method can

be performed without any human interaction.

Table 4: Experimental comparison of our method to Inner Distance

(ID) [8], Shape Context (SC) [6] and Path Similarity (PS) [5] on

Kimia99 dataset. The last column illustrates the overall feature gener-

ation and matching time in hours.

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th Time

ID 99 97 92 89 85 85 76 75 63 53 0.15

SC 99 97 91 88 84 83 76 76 68 62 0.69

PS 99 99 99 99 96 97 95 93 89 73 0.38

Our 99 99 96 92 88 84 80 78 73 60 0.36

Tetrapod120 Database: Tetrapod120 database is organised

by ourselves, includes 120 visually similar tetrapod animals

with 6 classes, such as camel, cattle, deer, dog, elephant and

horse.With this dataset, we aim to evaluate the ability of match-

ing methods for fine-grained shapes. Fine-grained shapes have

the similar global topology, but they are mixed up with defor-

mations in some local regions, like dogs and cats. In other

words, we evaluate the ability of object matching methods for

handling local shape deformations. As illustrated in Table 5,

the proposed method achieves the best results. This indicates

that the geometric relationship between interesting points is an

important feature for distinguishing fine-grained objects.

Table 5: Experimental comparison of our methodology to Inner Dis-

tance (ID) [8], Shape Context (SC) [6] and Path Similarity (PS) [5]

using Tetrapod120 dataset. The last column illustrates the overall fea-

ture generation and matching time in hours.

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th Time

ID 120 118 106 101 90 83 77 69 70 56 0.22

SC 100 80 70 53 53 51 40 28 27 27 0.96

PS 120 109 101 98 81 78 68 66 65 59 1.41

Our 120 115 111 105 105 103 98 93 94 87 0.53

MPEG7 Database: The total number of images in the

MPEG7 [37] database is 1400: 70 classes of various shapes,

each class with 20 images. We employ the so-called bulls-eye

score [37] for evaluation. Given a query shape, we retrieve the

40 most similar shapes from the database and count the number

of shapes belonging to the same class as the query. The bulls-

eye score is the ratio of the total number of correctly matched

shapes to the number of all the possible matches (which is

20 × 1400). Thus, the best score is 100 percent. However,

as discussed in [37], the 100% bulls-eye score is impossible to

achieve since some classes contain objects whose shape is sig-

nificantly different so that it is not possible to group them into

the same class using only their shapes.

For comparison, Table 6 lists several reported results and the

results by our proposed method on MPEG7 dataset. We clus-

ter existing methods into two groups: pairwise matching and

context-based matching. In the first group, results are decided

by the similarity measures for shape pairs. In the second group,

results are generated by considering the underlying structure of

the shape manifold [38] in which the obtained similarity scores

are post-processed by analysing the shape similarities between

all given shapes to increase the discriminability between differ-

ent shape groups.

In the first group, the proposed matching method achieves

a 80.28% bulls-eye score which is better than a traditional

contour-based descriptor [6]. However, this approach performs

not as well as Shape Tree [39] and HF [40], etc. The main rea-

son is that we only used 240 sample points from shape contour

(containing more than 1500 points) to generate point context

features for interesting points and the performance can be im-

proved by using more sample points. In the group of context-

based methods, we employ a simple and fast Mutual kNN

Graph method [41] based on the proposed similarity scores

between all the shapes. This method captures the manifold

structure by defining a neighbourhood for each shape. Our

method, which achieves 96.43% bulls-eye score, outperforms

most state-of-the-art methods. It is important to mention that

Donoser et al. [42] proposed a generic framework for diffusion

processes in the scope of retrieval applications which achieved

100% accuracy on MPEG7 dataset. However, as illustrated in

Table 6, our performance comes close to 100% only using the

simple Mutual kNN Graph method.

Table 6: Bulls-eye score on the MPEG7 Dataset. HG denotes the

proposed high-order matching method.

Pairwise Matching Score Context-based Score

Shape Contexts [6] 76.51% INSC + CDM [43] 88.30%

Skeletal Context [44] 79.92% IDSC + LP [45] 91.00%

Optimized CSS [46] 81.12% SC + LP [45] 92.91%

Multiscale Rep. [47] 84.93% IDSC + LCDP [48] 93.32%

Shape LAneRouge [49] 85.25% SC + GM +Meta [50] 92.51%

Fixed Cor. [51] 85.40% IDSC +MG [41] 93.40%

Inner Distance [8] 85.40% IDSC + PS + LDCP [52] 95.60%

Symbolic Rep. [53] 85.92% ASC + LDCP [54] 95.96%

Hier.Procrustes [55] 86.35% HF + LCDP [40] 96.45%

Triangle Area [56] 87.23% SC + DDGM + Co-T [38] 97.45%

Shape Tree [39] 87.70% AIR [57] 93.67%

Height Functions [40] 89.66% ASC + TN + TPG [58] 96.47%

HG 80.28% HG +Mutual Graph 96.43%

5.5. Application Independent Experiments

In order to evaluate the proposed method in the case of unseg-

mented natural image settings, we apply two experiments using

the ETHZ shape classes dataset [59]. This dataset features five

diverse classes (apples, bottles, giraffes, mugs and swans) and

contains a total of 255 images collected from the Internet. It

is highly challenging, as the objects appear in a wide range

of scales; there is considerable intraclass shape variation, and

many images are severely cluttered. Based on this dataset, we

generate two groups of shapes. In the first group, shapes are

generated by the ground truth shapes. We also introduce noise

into the shapes to mimic imperfect segmentations. In the sec-

ond group, shapes are generated by a semi-supervised segmen-

tation method introduced in [60]. In this method, the shape of a

target object is detected and segmented by an object boundary

detector which can best fit its situation using the global image

appearance. Some sample images and their segmented shapes

are shown in Figure 9.

In the first experiment, we apply the proposed point detection

method to two shape groups and report the false positive (FP)
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and false negative (FN) rates of detecting interesting points in

Table 7 (the upper table). We can observe that the FP rates in

two groups are both promising (1.66% and 0.81%) while the FN

rates are much higher (11.26% and 9.64%). The main reason is

that our point detection method only takes the boundary points

by mainly considering the overall shape tend. In this case, some

corner points could be ignored which leads to the high FN rates.

In the future, we will try to detect interesting points by consid-

ering both overall shape tend and boundary corner to reduce the

FN rate of our method.

Fig. 9: Sample images and their correlated shapes from ETHZ [59]

database. The second row illustrates the ground truth shapes with man-

ually added noise. The third row shows the segmented shapes using the

semi-supervised segmentation method in [60].

Table 7: Experimental results of interesting point detection (the up-

per table) and shape retrieval (the lower table) in the case of imperfect

segmentations. Here, M and S illustrate the ground truth shapes with

manually added noise and the shapes using the semi-supervised seg-

mentation method [60], respectively.

apples bottles giraffes mugs swans mean

FP FN FP FN FP FN FP FN FP FN FP FN

M 2.98 16.45 2.26 1.04 0.38 12.35 2.15 16.96 0.52 9.52 1.66 11.26

S 0.94 9.63 0.87 3.56 0.83 12.40 0.69 12.75 0.74 9.88 0.81 9.64

apples bottles giraffes mugs swans mean

M 83.81 79.99 68.01 71.09 54.88 71.56

S 70.50 60.81 62.07 55.12 48.63 59.43

In the second experiment, we use two shape groups in a re-

trieval scenario. The mean accuracies within each class and

the whole dataset are reported in Table 7 (the lower table).

Though the mean accuracy in the shape group with manually

added noise is higher than the semi-segmented shapes, the over-

all performances of our method are not promising in both shape

groups. There are two reasons for this: The first reason is that

the integrated high-order graph matching could mislead the par-

tial matching since an imperfectly segmented shape could have

a high number of interesting points which do not belong to the

main object. With the higher-order constraints, those “fake”

interesting points could be matched to the “real” one which

influence the similarity value between shapes. Therefore, for

the shape matching applications with imperfect segmentation,

the high-order graph matching is not recommended. The sec-

ond reason is due to the invariant properties of the proposed

shape descriptor. Theoretically, for a single interesting point,

our point context descriptor is rotation invariant. Considering a

shape with multiple interesting points, the proposed shape de-

scriptor in Eq. 4 is not completely invariant to rotation since

the order of interesting points could be changed if a shape

is rotated. In practice, this problem can be easily solved by

some shape preprocessing methods [61]. However, in many

applications, complete invariance impedes recognition perfor-

mance [6]. Therefore, we apply the complete rotation invari-

ance based on applications.

5.6. Computational Complexity

We now analyse the computational complexity of the pro-

posed interesting point generation and matching approaches.

(1) For interesting point generation, the time complexity is in

the order of O(N′2), where N′ is the number of boundary points

in the shape Ω. This is because the worst case of Douglas-

Peucker [26] is O(N′2). Moreover, the computational complex-

ity of FMM [27] is O(N′). For the remaining sequence gen-

eration and filtering tasks, they can be finished in O(N′) time.

Fusing those tasks together, the overall complexity is O(N′2).

(2) For point context generation, the time complexity is O(mn),

where m and n are the number of interesting points and con-

tour sample points, respectively. This is because point context

features are generated by considering the distance and orienta-

tion relationships between each interesting point and contour

sample points. In practice, since the m is a value indepen-

dent of contour sample points and m ≪ n, the computational

complexity of this method is determined by the contour sam-

ple points. Therefore, the complexity for feature generation is

O(n). (3) For interesting point matching, we analyse the com-

putational complexity by different potentials. The Hungarian

algorithm is used for singleton potential; as introduced in [10],

it can solve our point matching task in O(N3) time. For the

third-order potential, assuming we select m1 and m2 interest-

ing points from two shapes, there are O(m3
1
m3

2
) possible triplets,

each represented by a high-order term in Eq. 7. This enables us

to significantly reduce the complexity without searching for all

possible matching correspondences.

Here we report the computation time based on Kimia216

dataset with the experimental environment introduced above.

On average, the shape resolution in this dataset is 187 × 239.

For interesting point generation, the mean time is 5.33 seconds

on each shape. With interesting points, the mean time for point

context generation is 0.01 seconds. Given two sets of inter-

esting points, the mean matching time is 0.09 seconds. Please

notice that our code is not optimised, and its faster implemen-

tation is possible by optimising loops and programming, etc.

6. Conclusion and Future Work

In this paper, a novel shape matching method based on the

interesting point detector and high-order graph matching is pre-

sented. The main idea is to generate some interesting points

on each shape contour for correspondence matching. For each

interesting point, we also proposed the point context descriptor

to capture its geometrical and topological locations. For shape

matching, we employ a high-order graph matching method in

order to involve not only the assignments of single interest-

ing points, but also the geometrical relations of their triplets.

The experiments on six databases demonstrate the significant

improvements of shape matching. In the future, we will try



11

to enrich the types of interesting points by fusing with other

corner detection methods. Moreover, we will also consider

to solve our high-order matching problem using Monte-Carlo

based methods. Specifically, with the framework of particle fil-

ter, we can sample particles using the assignments between in-

teresting points and their triangles. The individual importance

weight is assigned to each particle according to the proposed

singleton and third-order potentials. With the iterations of re-

sampling, the optimal correspondences can be observed.
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