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Abstract

The skeleton of an object provides an intuitive and effective abstraction which facil-

itates object matching and recognition. However, without any human interaction, tradi-

tional skeleton-based descriptors and matching algorithms are not stable for deformable

objects. Specifically, some fine-grained topological and geometrical features would be

discarded if the skeleton was incomplete or only represented significant visual parts of

an object. Moreover, the performance of skeleton-based matching highly depends on

the quality and completeness of skeletons. In this paper, we propose a novel object rep-

resentation and matching algorithm based on hierarchical skeletons which capture the

shape topology and geometry through multiple levels of skeletons. For object represen-

tation, we reuse the pruned skeleton branches to represent the coarse- and fine-grained

shape topological and geometrical features. Moreover, this can improve the stability

of skeleton pruning without human interaction. We also propose an object matching

method which considers both global shape properties and fine-grained deformations

by defining singleton and pairwise potentials for similarity computation between hi-

erarchical skeletons. Our experiments attest our hierarchical skeleton-based method a

significantly better performance than most existing shape-based object matching meth-

ods on six datasets, achieving a 99.21% bulls-eye score on the MPEG7 shape dataset.
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1. Introduction

Shape is an expressive abstraction of the visual pattern of an object. While there

are many different approaches [1] using shape for object matching, nearly all of them

face the same challenge: object deformation. As shown in Figure 1, the shapes of the

same object are visually different depending on its deformations. To overcome this,5

on the one hand, various robust shape descriptors [2, 3, 4, 5, 6, 7, 8, 9, 10, 11] are de-

signed to capture both local and global geometric properties. On the other hand, some

holistic [12, 13] and elastic [8, 14, 2] matching algorithms are proposed to handle the

ambiguous correspondences. Among the above-mentioned research efforts, skeleton is

an important shape descriptor for deformable object matching since it integrates both10

geometrical and topological features of an object.

Figure 1: An illustration of shapes which significantly vary depending on deformations.

(a) Shape (b) Maximum disks (c) Collection of centres (d) Skeleton

Figure 2: An overview of the skeletonisation process to convert a given shape (a) into a skeleton

(d). (b) and (c) visually illustrate the skeleton extraction process, where the skeleton (red line)

of a shape (rectangle) is generated by collecting the centres (red dots) of all discs (green dotted

circles) that touch the boundary of the shape on two or more different locations (dotted arrows).

Figure 2 shows an overview of the skeletonisation process to convert a given shape

(a) into a skeleton (d). Specifically, a skeleton is defined as a connected set of medial
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lines along the limbs of its shape [15]. From a technical point of view, such a skeleton

is extracted by continuously collecting centre points of maximal tangent disks touching15

the object boundary on two or more locations, as shown in Figure 2 (b) and (c). The

centre point of a maximal tangent disk is referred to as a skeleton point. The sequence

of connected skeleton points is called a skeleton branch. A skeleton point having only

one adjacent point is an endpoint (the skeleton endpoint). A skeleton point having

three or more adjacent points is a junction point. The skeletons described above usually20

lead to a better performance than contour or other shape descriptors in the presence of

partial occlusion and articulation of parts [16]. This is because skeletons have a notion

of both the interior and exterior of the shape [16], and are useful for finding the intuitive

correspondence of deformable shapes.

However, a skeleton is sensitive to the deformation of an object’s boundary because25

little variation or noise of the boundary often generates redundant skeleton branches

that may seriously disturb the topology of the skeleton [17, 18, 19]. Furthermore, a

large number of skeleton branches may cause the overfitting problem and high com-

putation complexity. Though skeleton pruning [12, 17] approaches can remove the in-

accurate or redundant branches while preserving the essential topology, they normally30

require manual intervention to produce visually pleasing skeletons. Moreover, the per-

formance of skeleton-based matching highly depends on the quality and completeness

of skeletons.

To overcome these problems, we propose a hierarchical skeleton-based object match-

ing method. A hierarchical skeleton is a set of skeletons that represent an object at35

different levels. More specifically, during the skeleton pruning process, we store all

the pruned branches until the skeleton is pruned to the simplest form. These branches

are reused to construct the hierarchical skeleton which is favourable for the following

reasons: First, it does not need any manual intervention since we consider a set of

skeletons rather than a single one. Second, a hierarchical skeleton captures geometric40

and topological features at different levels along with skeleton pruning. Fine levels

feature the small object deformation while skeletons at coarse levels capture global

shape deformations. This enables us to develop an object matching algorithm that al-

lows more deformations on finer levels while preserving important global geometrical
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and topological properties. This design is based on the fact that objects (e.g. the four45

objects on the right side of the arrow in Figure 3) reconstructed with the same skeleton

topology are still perceptually similar to the original (the triangle on the left side of the

arrow in Figure 3) even though there are some fine-grained noises and deformations.

Figure 3: Examples of shapes that are perceptually similar to the original one, irrespective of

fine-grained noises and deformations.

The third advantage of a hierarchical skeleton is that it can also provide additional

information for improving the object matching accuracy. In particular, by looking into50

the skeleton pruning process, transitions of pruned skeletons from the same category

are more similar than those from different ones. This is because skeletons from the

same category have more similar branches and these branches on each level have sim-

ilar effects on the possible skeleton reconstruction. We call this phenomenon skeleton

evolution. In Section 5.3, we show that adopting skeleton evolutions improves the55

performance of object matching.

As the fourth advantage, the hierarchical skeleton is obtained along with the skele-

ton pruning process, requiring no extra computational cost. Lastly, by limiting levels

of hierachical skeletons, we can filter out skeleton branches which represent shape

properties irrelevant to matching. This alleviates the overfitting problem.60

2. Related Work

Several skeletonisation methods have been developed to generate proper skele-

tons [20, 21, 22, 23]. One typical approach is to continuously collect the centre points

of maximal tangent disks that touch the object boundary in two or more locations.

However, all of the obtained skeletons are sensitive to small changes and noises in65

the object boundary [24, 25]. The intrinsic reason is that a small protrusion on the
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boundary may result in a large skeleton branch. To solve this problem, Choi and Telea,

etc [26, 27, 28, 29] proposed algorithms to detect the skeleton in a distance map of

the boundary points. Figure 4(i) shows a skeleton obtained by the method in [28].

Although these methods can preserve some visual parts of a shape, some significant70

parts are missing. Therefore, they cannot guarantee the completeness of a skeleton.

To overcome this, Bai and Latecki present significance measures for skeleton prun-

ing associated with Discrete Curve Evolution (DCE) [12] or Bending Potential Ratio

(BPR) [17]. Both methods decide whether or not a skeletal branch should be pruned by

evaluating the contribution of its corresponding boundary segment to the overall shape.75

However, these methods require manual intervention to stop the evaluation and produce

visually pleasing skeletons. For example, in Figure 4, DCE [12] requires a proper stop

parameter k to calibrate the pruning power. However, different stop parameters for the

same object (the first row in Figure 4) or the same parameter for different objects (the

second row in Figure 4) lead to visually different skeletons in which some important80

parts are missing (legs in Figure 4(a), 4(b), 4(e), 4(f)). Furthermore, even if we find

the best stop parameter, skeletons of the same object sometimes differ if the scale is

changed (Figure 4(g) and 4(h)). This is because the vanishing of shape parts is unavoid-

able when the resolution decreases [30]. Therefore, fixing k for skeleton pruning is not

a proper solution for all objects. In contrast, our hierarchical skeleton is a collection of85

skeletons obtained by all the stop parameters. This not only eliminates the necessity

of manually tuning a stop parameter, but also preserves both the coarse-grained global

and fine-grained local properties of a shape.

For skeleton matching, most methods [31, 32, 33, 34, 35, 36, 37, 38] only consider

one skeleton for a shape. However, the matching performance relies on the quality90

of a skeleton since it is essential to find the correct corresponding elements. Some

methods [18, 25, 39] promote the matching performance by fusing additional shape

descriptors. Though the global matching accuracy could be improved, it requires ad-

ditional time complexity for feature generation and parameter optimisation. Moreover,

the contribution of the skeleton-based part remains the same. In contrast, we repre-95

sent a hierarchical skeleton as a set of multiple skeletons. Although it includes both

high- and low-quality skeletons, our matching method can appropriately determine the
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(a) k = 8 (b) k = 12 (c) k = 14

(d) k = 12 (e) k = 12 (f) k = 12

(g) k = 16 (h) k = 16 (i) Obtained by [27]

Figure 4: Skeletons on the same elephant shape with different DCE stop parameters k (first row),

skeletons on different shapes with the same DCE stop parameter k (second row), and skeletons

on the shape with different scales and the same stop parameter ((g) and (h) in the third row), and

a pruned skeleton obtained by the method in [27] ((i) in the third row).

priority of each skeleton.

Although some researchers proposed approaches to organise skeletons into a hi-

erarchy or a graph, they have several problems in handling object deformation and100

fine-grained shape characteristics. Pizer [32] and Ogniewicz [40] proposed the shape

descriptors in the form of a hierarchy by inducing shapes into components with multi-

resolution and symmetric axis transform approaches. The scale value and parent-child

relationship are induced under a successive reduction of resolution. Macrini [33, 34,

35] introduced a graph-based medial shape abstraction called bone graph [41]. Here,105

edges are designed to allow a richer specification of relational information, includ-
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ing how and where two medial parts meet. Although the approaches described above

are robust to noise in the object boundary, several drawbacks remain: (1) They may

fail to find an appropriate matching solution because of the heuristics for finding the

skeleton tree root [42]. (2) Some fine-grained shape features could be lost as they110

smooth the shape boundaries before extracting the skeletons. In particular, curvature

flow smoothing would remove the fine characteristic of a shape. As a result, the topol-

ogy and geometry of the skeleton would be altered. (3) The main skeleton branches

based on these approaches are shortened which may lose important fine-grained shape

information and seriously compromise the structure of the skeletons. Thus, the short-115

ening of branches may make branches of significant visual parts indistinguishable from

branches attributed to noise.

Unlike the above-mentioned approaches, our hierarchical skeleton is constructed

by collecting skeletons that are examined in skeleton pruning steps. This offers the fol-

lowing advantages: First, we do not need to search the root level since all hierarchical120

levels are ordered along with skeleton pruning steps. Moreover, the proposed method

fully uses the boundary information for object matching since they are hierarchically

preserved by our descriptor. Lastly, in our method, skeletons on each level are not

shortened which can reduce the ambiguous correspondences and improve the accuracy

of single skeleton matching.125

3. Hierarchical Skeleton Extraction

The extraction of a hierarchical skeleton takes advantage of skeleton pruning which

iteratively removes skeleton branches of visually insignificant shape parts based on

the boundary abstraction method, DCE [12]. Figure 5 illustrates an overview of the

pruning process: (1) Given a planar shape D (Figure 5(a)), the Max-Disk Model [26]130

is used to generate the initial skeleton Sn(D) (Figure 5(b)) as a set of centre points of

circles that are in contact with the shape boundary. That is, s ∈ Sn(D) is the centre

of such a circle, and contact points of s on the shape boundary are called generating

points. n indicates the first iteration index of DCE and will be iteratively decremented

until 3. k denotes one of these steps. (2) The boundary of D is regarded as the initial135
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polygon Pn and will be simplified into the polygon P k (blue solid line in Figure 5(c))

using the polygon simplification method described below. (3) With P k, Sn(D) is

pruned by removing all skeleton points s ∈ Sn(D) so that the generating points (the

points of tangency between the shape contour and the max discs) of s are contained

in the same contour segment. A contour segment is defined as a part of the shape140

boundary which is approximated by the straight line (polygon partition) between two

neighbouring vertices of P k (red stars in Figure 5(c)). Each pruned point s results

from a contour segment with respect to the polygon partition and therefore, s can be

considered as an unimportant skeleton point and can be removed.

In order to describe the aforementioned processes more intuitively, we enlarge the145

bird head (the part in the red-dotted rectangles) in Figure 5 as an example. Specifically,

the initial head skeleton and the head contour are illustrated together in (e). With

vertices of P k (the red points), the head contour is divided into three contour segments

(marked with three different colours in (f)). Here, a skeleton point s (the green point in

(f)) is generated by a max-disc (the green circle) which has at least two touching points150

(generating points) to the shape contour. Since all the touching points of s are located

in the same contour segment (with the pink colour), s is an unimportant skeleton point

and can be removed. We iteratively apply this removal process until all unimportant

skeleton points are erased. As a result, the skeleton in (f) is pruned and illustrated in

(g).155

The skeleton pruning described above is based on a simplified polygon P k. Below,

we explain how DCE generates P k. As shown in Figure 6, a pair of consecutive line

segments s1, s2 is replaced by a single line segment that connects the endpoints of

s1 ∪ s2. DCE produces a sequence of simpler polygons P = Pn, Pn−1, ..., P 3 so that

Pn−k is obtained by removing a single vertex υ from Pn−k+1. Here, υ is regarded as

having the smallest shape contribution based on the following measure K:

K(s1, s2) =
β(s1, s2)l(s1)l(s2)

l(s1) + l(s2)
. (1)

where β(s1, s2) is the angle of the corner consisting of s1 and s2. l is the length

function normalised with respect to the total length of lines constituting the polygon.

Based on K, while the the value of K(s1, s2) becomes higher, the contribution of
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(a) (b) (c) (d)

(e) (f) (g)

Figure 5: Illustration of original shape D, initial skeleton Sn(D), simplified polygon P k and the

pruned skeleton Sn−k+1(D) generated by [12] with k = 10.

s1 ∪ s2 to the polygon is larger. A few stages of polygon simplification are illustrated

in Figure 7.160

By reordering polygons from simple to complex in the polygon simplification steps

(i.e., P = P 3, P 4, · · · , Pn), we construct a hierarchical skeleton S(D) = S3, S4, · · · , Sn.

As pruned skeletons are a by-product of the polygon simplification process, the total

calculation cost stays the same to the skeleton pruning process. In order to reduce the

computational cost of skeleton matching, we build S(D) only using skeletons collected165

from the Tminth to Tmaxth iterations. In this experiment, we select Tmax as the start

step number based on the trade-off between computation time and matching results,

Tmax > Tmin. With this, the DCE iteration can directly start from Tmax and stops at

Tmin. An example of a hierarchical skeleton is shown in Figure 8, and we only use the

skeletons with t ∈ [3, 15] for matching. Setting Tmin = 3 is based on the constraint170

that skeletons should have at least three endpoints.
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(a) (b)

Figure 6: Polygon simplification. As vertex υ has the smallest contribution with Eq. 1, its con-

secutive line segments s1, s2 are replaced by a single line segment (red line in (b)).

4. Matching

In this section, we first introduce the formulation of a matching algorithm based

on the properties of hierarchical skeletons. Then, we define two potential functions

which are used to capture the shape similarity from different properties of hierarchical175

skeletons.

4.1. Formulation of Hierarchical Skeleton Matching

LetD1 andD2 be two planar shapes, S(D1) and S(D2) denote the full hierarchical

skeletons for D1 and D2, respectively. Let us denote by S1 ⊆ S(D1) or S2 ⊆ S(D2)

the set of skeletons from the levels [Tmin, Tmax] that are chosen for object matching.

In order to calculate the distance between S1 and S2, we define p as a set of corre-

spondences between skeletons in S1 and those in S2. Based on this, we formulate

hierarchical skeleton matching as follows:

d(S1, S2) =
∑
a∈p

g(θa)xa +
∑

(a,b)∈p×p

g(θab)xaxb . (2)

where θa is the matching cost for each correspondence a ∈ p (the singleton potential,

dotted arrows in Figure 9) that expresses the property of skeleton-based object match-

ing. θab is the matching cost of a pair of correspondences (a, b) ∈ p× p (the pairwise

potential, skeleton pairs connected by solid arrows in Figure 9) that represents the dif-

ference between skeleton evolutions in two hierarchical skeletons. Here, the skeleton
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Figure 7: Polygon P (in blue line) and vertex υ (in red asterisk) changes along with a few stages

of DCE.

evolution of a hierarchical skeleton is characterised as changes between skeleton pairs

on two different levels. The rationale behind this is that there is no predictable pattern

in how skeletons change in different levels. In some levels, skeletons are even the same

due to the overlapped removal of skeleton points along with the polygon simplifica-

tion. However, as shown in Figure 8, the overall trend is that skeletons are gradually

becoming more complex along with the DCE steps. Built on this observation, we col-

lect the skeleton changes by considering all skeleton pairs in a hierarchical skeleton.

With this strategy, even the skeleton changes are zero within some pairs, we can still

get sufficient skeleton evolution information to distinguish two hierarchical skeletons

since we calculate the overall accumulation of the skeleton changes. g(θa) = |θa|α (or

g(θab) = |θab|α) is the power function term to alleviate effects by abnormally large

matching costs θa (or θab) [43]. Based on our preliminary experiment, we set α to

0.18. This value is obtained by employing a combination of two heuristic optimisation

methods: Gradient Hill Climbing [44] integrated with Simulated Annealing [45]. xa is

the boolean indicator variable:

xa =

1 if a = (i, j) ∈ p and i = j

0 otherwise
. (3)
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Figure 8: A hierarchical skeleton with DCE steps from t = 3 to 17. We call the changes of these

skeletons as skeleton evolution.

where i and j denote the skeleton level, i, j ∈ [Tmin, Tmax]. In the following discus-

sion, we denote the skeleton on the ith level of S1 and on the jth level of S2 by Si1 and

Sj2 , respectively.180

As shown in Eq. 3, we set the constraint condition i = j for xa = 1. This constraint

ensures that each skeleton in S1 is mapped to the skeleton on the same level in S2 (pre-

sented by dash arrows in Figure 9). The rationale behind this is as follows: Firstly,

it is very important for our proposed method to reduce the computation complexity

since one computation of the similarity between two skeletons takes a long time, so185

repeating this computation (Tmax − Tmin + 1)2 times requires prohibitive computa-

tional cost. Secondly, a hierarchical skeleton is organized from simple to complex,

and the skeleton on one level is included in the ones on higher levels. In other words,

even if one hierarchical level does not offer the best correspondences for endpoints in

two skeletons, they could be found on the higher levels. Thirdly, experimental results190

in Figure 15 illustrate that the performance of finding the global optimum matching

operates far less efficiently than our proposed method due to the overfitting problem.

Another possible singleton potential is to match skeletons on the levels that are adja-

cent to the current level. However, as illustrated in Figure 8, many adjacent skeletons
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Coarse Level

Fine Level

Figure 9: Illustration of the matching algorithm for hierarchical skeletons. All skeletons in S1

and S2 are ordered from coarse level (Tmin) to fine level (Tmax).

have the same skeleton structure. Moreover, the new added endpoints in the adjacent195

skeletons could be jumped by the skeleton matching algorithm which we employed for

the singleton potential. Thus, we think that matching skeletons on the adjacent levels

will not offer significant performance improvement, but it incurs a significant increase

of computational cost. Therefore, matching skeletons on the same level is reasonable

in terms of both the computational cost and performance.200

4.2. Potential Functions

Below, we introduce the singleton potential θa and pairwise potential θab in Eq. 2.

4.2.1. The Singleton Potential

For each correspondence (i, j), i, j ∈ [Tmin, Tmax], we consider the skeleton graph

information to define its singleton potential as in [31]. The idea is to find the best

matching between endpoints in two skeletons. The skeleton graphs Si1 and Sj2 are

matched by comparing the geodesic paths between their skeleton endpoints. Then,

all the dissimilarity costs between their endpoints are represented as a distance ma-

trix M(Si1, S
j
2). The total dissimilarity c(Si1, S

j
2) between Si1 and Sj2 is computed by
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searching correspondences between skeleton endpoints with the Hungarian algorithm

on M(Si1, S
j
2), so that endpoints in Si1 and Sj2 are matched with the minimal cost. The

singleton potential for the correspondence (i, j) is defined as

θa = σ · c(Si
1, S

j
2) . (4)

where σ is a weighting factor obtained using the arithmetic progression [ 1
Tmax−Tmin+1 ,

2
Tmax−Tmin+1 , · · · , 1]. In other words, we assign higher weights to coarse-level skele-205

tons to preserve important global shape properties while charging lower weights on

fine-level skeletons to allow small local deformations. Although the arithmetic pro-

gression uses the same weight for skeletons on a certain level without considering their

characteristics, it practically works well. A possible improvement is to estimate opti-

mal weights depending on a given pair of hierarchical skeletons using distance metric210

learning [46]. In Section 6, we will discuss this extension as our future work.

4.2.2. The Pairwise Potential

The pairwise potential is calculated by comparing skeletons (Si1 and Sj1) (solid

arrows on S1 in Figure 9) on two levels in S1(D) to those (Si2 and Sj2) (solid arrows on

S2 in Figure 9) on the respective levels in S2(D):

θab =
1
2
mi,j . (5)

where i, j ∈ [Tmin, Tmax] and mi,j are denoted as the similarity between the pair of

Si1 and Sj1 and the pair of Si2 and Sj2:

mi,j =
|f(Si

1,S
j
1)−f(Si

2,S
j
2)|

f(Si
1,S

j
1)+f(Si

2,S
j
2)

(6)

In Eq. 6, f(Siz, S
j
z)(z ∈ {1, 2}) represents the change from Siz to Sjz . We calculate

f(Siz, S
j
z) based on the radius and length of new skeleton points between Siz and Sjz

(Figure 10(a) and 10(b)). Let N0 denote the number of skeleton points of the new

skeleton branches (e.g. the blue line in Figure 10(b)) from Siz to Sjz . The dissimilarity

f(Siz, S
j
z) is defined as

f(Si
z, S

j
z) =

N0∑
e=1

re + η
(L(Si

z)−L(Sj
z))

2

L(Si
z)+L(S

j
z)

. (7)
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where L(Siz) and L(Sjz) denote the length of skeleton Siz and that of Sjz , respectively.

In order to make our representation robust to scale changes, the new branch lengths are

normalized. re denotes the radius (e.g. the dotted arrow in Figure 10(b)) of the tangent215

disk of a skeleton point that touches the shape boundary in two or more locations. η

is the weight factor. This parameter is used for controlling the numeric consistency

between the term of radii and the term of skeleton lengths. Without η, the sum of

radii will be much larger than the distance between two skeletons and finally dominate

f(Siz, S
j
z) in Eq. 7. We experimentally set η = 1.2 2. In Eq. 7, the difference between220

skeleton lengths primarily captures their coarse-grained dissimilarity, while their fine-

grained difference is magnified by taking the sum of radii from skeleton points. By

fusing two terms, the distinctiveness between two skeletons is more obvious and robust.

(a) Si
z (red) (b) Sj

z (red and blue) (c) DT (colour map)

Figure 10: Radius and skeleton length. Skeleton Sj
z has one new branch (blue line) compared to

skeleton Si
z . L(Si

z) is calculated by the length of red lines in (a) while L(Sj
z) is calculated by

the length of the red lines plus the length of the blue line in (b). For a skeleton point (red point),

re is the radius (dotted arrow) of its tangent disk (green dotted circle). re is approximately equal

to the normalised value of DT (e) in the distance transform matrix DT .

It should be noted that the length ratio pairwise potential have likewise been used

extensively [47, 14], however, the sequence of radii is not fully involved. We consider

the radius to better represent the reconstruction area between skeletons on different hi-

erarchical levels. For this purpose, we first perform the Distance Transform to compute

a matrix DT in which each pixel in the original shape D is characterised by the dis-

tance to its closest boundary (Figure 10(c)). Then, for each skeleton point with index e,

2In the appendix, we illustrate how performance changes in a figure by varying η.
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we select DT (e) as the radius re. To make the proposed method invariant to the scale,

we normalize re in the following way:

re = DT (e)
1

N1

∑N1
t′=1

DT (pt′ )
. (8)

where pt′(t′ = 1, 2, · · · , N1) varies over all N1 pixels in D.225

Although flexible matchings for measuring skeleton evolution between S1 and S2

are possible using tree or graph matching algorithms [31, 48], we decide not to use

them for the following reasons: First, tree or graph matching algorithms can flexibly

match Si1 ∈ S1 and Sj2 ∈ S2 where i and j do not have to be the same. However, this

kind of matching requires examining similarities for many pairs of Si1 and Sj2 , and what230

is worse, even computing the similarity for one pair constitutes a high computational

cost. Secondly, tree or graph matching methods normally consider the correspondences

between endpoints in Si1 and Sj2 . However, as can be seen in Figure 8, a skeleton on

one level is characterised by adding a trivial endpoint to the skeleton on a higher level.

Such an endpoint is not useful for describing the transitions of skeletons (i.e. skeleton235

evolution). Compared to endpoints, we consider changes of length and radius to be a

better representation of skeleton evolution, and they cannot be used directly in usual

tree or graph matching algorithms.

5. Experiments

In this section, the proposed object representation method is first assessed formed240

on the singleton potential. Secondly, the usability of skeleton evolution is approved

depending on the pairwise potential. Thirdly, the proposed matching algorithm with

both potentials is evaluated. Lastly, the implementation and computational complexity

of the proposed method is introduced and analysed. The experiments in this paper are

performed on two platforms: Laptop and cluster. Hierarchical skeletons are generated245

on a laptop with Inter Core i7 2.2GHz CPU, 8.00GB memory and 64-bit Windows

8.1 OS. Shape retrieval experiments are accomplished on Horus, a cluster provided by

the University of Siegen, which includes 136 nodes, each consisting of 2 Intel Xeon

X5650 with 2,66 GHz and 48 GB of DDR3 Memory with 1333 MHz. With this cluster,

our massive experiments using various datasets and different comparison methods can250

16



be finished efficiently. All methods in our experiments are implemented in Matlab

(R2015a on the laptop, and R2014b on Horus).

Our evaluation is built on a retrieval framework where shapes in the database are

ranked based on their similarity to a query shape. To evaluate the retrieval performance,

we use the following measure:

y = 1
100

Q∑
n=1

Rn(1− n−1
Q

) . (9)

where Q denotes the number of shapes which belong to the same class as the query

shape. Rn denotes the number of retrieved shapes that are in the same class as the

query in the top-ranked n shapes. The evaluation measure in Eq. 9 is necessary for255

us to evaluate the retrieval performance accurately using both the number of correct

matches and the ranking positions.

5.1. Evaluation of Hierarchical Skeleton-based Representation

This section’s premise is to quantitatively assess the influence of skeleton pruning

for shape matching as well as the effectiveness of hierarchical skeletons. For the first260

purpose, we perform skeleton-based object matching on Kimia216 [49] database which

contains 216 images from 18 classes. Figure 11 shows two example shapes in each of

these 18 classes. We employ a popular skeleton graph matching algorithm proposed

by Bai [31]. Table 1 depicts the matching performance of this method where skeletons

are generated by DCE-based approach with a fixed and manually tuned stop parameter265

k. We use each shape as a query and retrieve the 12 most similar shapes among the

whole dataset. The final value in each position is counter values that are obtained by

checking retrieval results using all the 216 shapes as queries. For example, the fourth

position in the row of k = 3 shows that from 216 retrieval results in this position, 186

shapes are relevant to the query shapes. Scores in the last column are calculated with270

Eq. 9. As shown in Table 1, results obtained by the fixed k are much worse than the

result reported in [12], as a consequence of the incompleteness of skeletons to represent

shapes (e.g. body parts are missing in Figure 4). Like this, the matching performance

heavily relies on the quality of skeletons and especially the stop parameter k.
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Figure 11: Sample shapes from Kimia216 [49] database.

We use MPEG7 [50] and Animal2000 [51] databases to evaluate the performance of275

our hierarchical skeleton representation. The total number of images in the MPEG7 [50]

database is 1400: 70 classes of various shapes, each class with 20 images (Figure 12).

We employ the so-called bulls-eye score [50] for evaluation since this score is generally

used by other methods for comparing the retrieval performance on MPEG7 dataset.

Given a query shape, we retrieve the 40 most similar shapes from the database and280

count the number of shapes belonging to the same class as the query. The bulls-eye

score is the ratio of the total number of correctly matched shapes to the number of all

the possible matches (which is 20 × 1400). Thus, the best score is 100 percent. How-

ever, as discussed in [50], the 100% bulls-eye score is not possible since some classes

contain objects whose shapes are significantly different, making it impossible to group285

them into the same class using only their shapes. Similar to the Kimia216 dataset, we

use the same skeleton pruning algorithm [12] and matching [31] algorithms.

Animal2000 database [51] has 2000 images where of 20 categories, each one con-

sists of 100 images (Figure 13). Since shapes in Animal2000 are obtained from objects

in real images, each class is characterised by a large intra-class variation of shapes. In290

particular, some important shape parts (e.g. legs) are missing, and some shapes have a

noisy inside or outside (holes and patches).

Tables 2 and 3 show the performance comparison between single and hierarchical

skeleton matching on MPEG7 and Animal2000, respectively. The performance in Ta-

ble 2 is evaluated using bulls-eye scores, while the one in Table 3 is measured based on295
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Table 1: Experimental comparison of path similarity skeleton graph matching [31] with different

stop parameters k for contour partitioning with DCE. Results are summarised as the number of

shapes from the same class among the first top 1-12 shapes. Last row represents the reported

results in [31] where k is manually tuned for each shape.

k 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th Score

3 216 203 196 186 182 154 157 132 117 102 91 77 11.3567

4 216 205 190 182 171 157 148 136 126 117 104 102 11.3208

5 216 203 191 187 184 171 165 154 138 136 117 108 11.7908

6 216 205 188 191 178 181 173 148 148 122 115 98 11.8342

7 216 208 204 197 190 181 156 155 135 127 102 92 12.0067

8 216 205 198 195 197 193 189 176 155 126 120 93 12.3783

9 216 209 199 203 193 191 186 177 162 150 131 118 12.4567

10 216 210 209 204 196 197 176 173 164 152 150 110 12.5817

11 216 207 204 196 193 189 177 165 155 141 132 92 12.3550

12 216 209 202 197 188 185 162 163 157 140 137 93 12.2375

13 216 205 206 195 192 186 177 167 152 146 120 89 12.3100

14 216 208 204 199 198 184 185 166 153 158 139 103 12.4917

15 216 212 206 201 197 192 187 168 150 131 95 95 12.4608

[31] 216 216 215 216 213 210 210 207 205 191 177 160 13.6983

Eq. 9. For single skeleton matching, we present scores obtained by different stop pa-

rameters k. [3,15] in both Tables 2 and 3 illustrates the hierarchical levels [Tmin, Tmax]

for calculating the singleton potential (without fusing pairwise potentials). For a fair

comparison, we use the same skeleton-based matching algorithm proposed by Bai [31]

for single and hierarchical skeletons. Tables 2 and 3 clearly indicate that without any300

human intervention (i.e. manual turning of a stop parameter), the proposed hierarchical

skeletons perform better than the traditional single skeletons. In the following discus-

sion, the best scores marked with bold font in Tables 1, 2 and 3 will be used for the

comparison of our proposed matching method.
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Table 2: Bulls-eye score on MPEG7 dataset using single skeletons with different stop parameters

k and hierarchical skeletons within the level [3,15]. Hierarchical skeleton matching outperforms

the best single skeleton matching (marked with bold font).

k 3 4 5 6 7 8 9

bulls-eye 0.7125 0.7165 0.7325 0.7421 0.7405 0.7430 0.7516

k 10 11 12 13 14 15 [3,15]

bulls-eye 0.7451 0.7547 0.7452 0.7455 0.7464 0.7432 0.7884

Table 3: Scores are computed by Eq. 9 on Animal2000 using the single skeletons with different

stop parameters k and the proposed hierarchical skeletons within the level [3,15]. Hierarchical

skeleton matching outperforms the best single skeleton matching (marked with bold font).

k 3 4 5 6 7 8 9

bulls-eye 231.55 225.98 234.49 228.09 230.73 225.93 232.61

k 10 11 12 13 14 15 [3,15]

bulls-eye 234.39 233.97 241.33 233.60 239.77 233.67 346.61

5.2. Evaluation of Hierarchical Skeleton Evolutions305

In this section, we visually prove that skeleton evolutions for the same category are

more similar than those for different ones. To do so, we randomly select nine objects

for three different classes (three objects in each class) in Kimia216 dataset [49]. We

generate the hierarchical skeleton of each object with k from 3 to 28. As it is composed

by single skeletons from coarse to fine levels, we treat it as a sequence. The first class310

involves bird02, bird07 and bird10 sequences. The second class involves camel12,

camel14 and camel17. The third class involves face01, face02, face03. Here, skeletons

with k = 3 and k = 28 are the start and end frames of the sequence, respectively. In

each frame in a sequence, we calculate the dissimilarity to the start frame using Eq. 7.

This dissimilarity calculation is applied to all nine sequences. We note that shapes in315

the same class would have different skeleton evolutions due to the scale difference.

However, as illustrated in Eq. 7 and Eq. 8, both radii and skeleton lengths have been

normalised, the proposed dissimilarity measure for skeleton evolution is scale invariant.
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Figure 12: Sample shapes from MPEG7 [50] database.

For each sequence, we plot the dissimilarity between each frame and the start frame

in Figure 14. Horizontal and vertical axes represent frame IDs (hierarchical levels) and320

dissimilarities to the start frame, respectively. For the sequences belonging to the same

class, we plot them with the same colour. In Figure 14(a), the first (birds, red) and

the second (camels, green) classes are printed. In Figure 14(b), the first and the third

(faces, green) classes are printed. For all nine objects, we can clearly observe that

1) the monotonicity of the dissimilarity is evident throughout the sequence as well as325

2) dissimilarity changes in the same class are more similar than the ones in different

classes. This proves the capacity of skeleton evolutions for distinguishing topologically

different shapes.

Moreover, we evaluate the performance improvement using skeleton evolution for

object retrieval on Kimia216 dataset. Based on Eq. 9, we calculate matching scores330

of four methods along with the DCE steps. As shown in Figure 15, these methods are

matching with both singleton and pairwise potentials (red bar), matching with singleton

potential (blue bar), the globally optimum matching (green bar) and the single skeleton
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Figure 13: Sample shapes from Animal2000 [51] database.

matching with PS [31] (black bar). For example, on DCE step 5, the score of the red bar

is calculated with the hierarchical skeletons from level 3 to 5 using both singleton and335

pairwise potentials while the blue bar uses only the singleton potential. The score of

the green bar is calculated with the best matched skeletons among 3 to 5 levels while

the black bar uses the skeletons only on level 5. Figure 15 shows that the globally

optimum matching obtains the lowest score among all DCE steps. The main reason

for this is the overfitting between skeletons with little endpoints and skeletons with340

plentiful endpoints. For the PS [31] method, the score is increasing from step 3 until

step 10. After that, the score decreases. For the singleton potential and proposed

method, scores are gradually increasing. Even the singleton potential performs better

than the PS method in the majority of steps. With the benefits from both the singleton

and pairwise potentials, the proposed method achieves the highest score. This validates345

the effectiveness of skeleton evolutions for object matching. In order to improve the

matching performance, we can use more levels for constructing hierarchical skeletons.

It will, however, incur more time for skeleton matching. Therefore, we need to choose

a proper level range of hierarchical skeletons to balance the scores and the matching

time. As shown in Figure 15, the matching performance of our method is gradually350

increased from level 3 to 13 and then becomes stable from level 13 to 15. With this

observation, we have selected 13 or its adjacent levels as the general level range for all

other experiments.
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Figure 14: Dissimilarities of each frame to the first one in skeleton evolution sequences. (a)

Dissimilarities in birds (red) and camels (green) sequences and (b) dissimilarities in birds (red)

and faces (green) sequences.

5.3. Hierarchical Skeleton-based Matching

In this section, we evaluate the generality of the proposed method using six datasets:355

Kimia216 [49], Kimia99 [49], Tari56 [52], Tetrapod, MPEG7 [50] and Animal2000 [51].

Kimia216 Database: Table 4 shows the performance comparison between the pro-

posed method, path similarity (PS1) [31] with the fixed k which achieves the best score

in Table 1, path similarity (PS2) with manually tuned k for each shape, inner dis-

tance [6] and shape context [2]. As shown in the upper block of Table 4, our method360

performs better than PS1 with the best stop parameter and close to PS2 with manually

tuned k for each shape.

Kimia99 Database: Kimia99 database [49] has images of 9 categories of objects, with

11 images per species for a total of 99 images (Figure 16). In Table 4, we compare our

result to the other methods (best score from k = 12 with PS [31]). The proposed365

algorithm significantly outperforms the other methods with a 1.85% improvement over

PS1 (with Eq. 9) and close to the PS2 with manually tuned k for each shape.

Tari56 Database: Tari56 database is used for testing the performance on non-rigid

objects. It includes 14 classes of articulated shapes with 4 shapes in each class (Fig-

ure 17). Although this database was introduced in [52], no result on the whole database370

is presented. Moreover, there is no detailed explanation of retrieval results on this
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Figure 15: Score comparison between different matching methods: the proposed method (red),

the singleton potential (blue), the global optimum matching method (green) and the PS method

(black). Horizontal axis represents the hierarchical skeleton levels and vertical axis represents

the retrieval score with Eq. 9.

Figure 16: Sample shapes from Kimia99 [49] database. This dataset is different from Kimia216.

dataset using Inner Distance [6], Path Similarity [31] and Shape Context [2] meth-

ods. In this paper, we use the source code of Inner Distance and Shape Context meth-

ods, implement the Path Similarity method by ourselves, and apply all these methods

to Tari56 database. Since there are some parameters involved by Inner Distance and375

Shape Context methods, we optimise them by a combination of two heuristic optimisa-

tion methods: Gradient Hill Climbing [44] integrated with Simulated Annealing [45].

The retrieval results are reported in Table 5 (the result of PS is obtained by the best

stop parameter k = 10). We can observe that the proposed method performs well

(1.96% better than the PS method) in the presence of non-rigid deformations. This380

is because hierarchical skeletons can capture non-rigid features of shapes by multiple

skeletons, which have higher discrimination power than single skeletons used in the

other methods.

Tetrapod Database: Tetrapod database includes 120 visually similar tetrapod animals
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Table 4: Experimental comparison of our method to state-of-the-art methods on Kimia216 and

Kimia99 datasets. PS1 denotes the retrieval results with fixed k which achieves the highest score

with Eq. 9. PS2 denotes the reported results in [31] with manually tuned k for each shape.

Kimia216 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

ID [6] 216 198 189 176 167 156 136 130 122 118 108

SC [2] 204 199 192 187 185 181 175 166 160 163 155

PS1 216 210 209 204 196 197 176 173 164 152 150

PS2 [31] 216 216 215 216 213 210 210 207 205 191 177

Ours 216 216 213 212 209 197 196 192 193 172 169

Kimia99 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

ID [6] 99 97 92 89 85 85 76 75 63 53

SC [2] 99 97 91 88 84 83 76 76 68 62

PS1 99 97 97 97 96 92 93 81 71 68

PS2 [31] 99 99 99 99 96 97 95 93 89 73

Ours 99 99 99 96 94 95 91 89 85 77

with 6 classes, such as camel, cattle, deer, dog, elephant and horse (Figure 18). We aim385

to evaluate the ability of matching methods for fine-grained shapes where some species

are really difficult to distinguish (e.g. horses and dogs). The main skeleton structures

among all these objects are quite similar. Therefore, in order to improve the accuracy

for object matching, fine-grained skeleton branches should be considered. As shown

in Table 6, the proposed method achieved the best results among all the other methods390

(8.96% better than the best score from ID [6] with Eq. 9). Although we only use 15

DCE levels for the experiment, there are still some levels unused but with essential

shape features. Therefore, we may improve the overall performance by integrating edit

distance [14] for measuring fine-grained deformations using these unused hierarchical

levels.395

MPEG7 Database: For comparison, Table 7 lists several reported results and the re-

sults by our proposed method on MPEG7 dataset. We cluster them into two groups:

pairwise matching and context-based matching. In the first group, results are decided
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Table 5: Results comparison on Tari56 dataset.

Tari56 1st 2nd 3rd 4th

ID [6] 56 46 37 28

SC [2] 52 17 10 10

PS [31] 56 49 44 40

Ours 56 51 50 33

Table 6: Experimental comparison on Tetrapod dataset.

Tetrapod 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

ID [6] 120 118 106 101 90 83 77 69 70 56

SC [2] 100 80 70 53 53 51 40 28 27 27

PS [31] 120 109 101 98 81 78 68 66 65 59

Ours 120 118 106 100 95 90 84 71 83 81

11th 12th 13th 14th 15th 16th 17th 18th 19th 20th

ID [6] 57 45 38 29 41 35 26 27 30 21

SC [2] 29 27 25 32 32 23 31 26 20 28

PS [31] 59 49 50 42 43 35 39 31 33 36

Ours 68 73 67 77 68 67 60 51 56 43

by the similarity measures for shape pairs. In the second group, results are gener-

ated by considering the underlying structure of the shape manifold [53] in which the400

obtained similarity scores are post-processed by analysing the shape similarities be-

tween all given shapes to increase the discriminability between different shape groups.

The proposed Hierarchical Skeleton (HS) with both singleton and pairwise potentials

achieves a 81.62% bulls-eye score that is significantly better than those of traditional

skeleton-based methods [3, 12]. This is because a single skeleton has limited ability to405

capture geometric properties at different levels of resolution. However, this approach

performs not as well as Shape Tree [8] and Height Functions (HF) [9], etc. The main

reason for this is the maximal DCE levels for our experiment being limited to 15 while

the performance can be improved by using more DCE levels.
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Figure 17: Full shapes from Tari56 [52] database.

Figure 18: Sample shapes from Tetrapod database.

In the group of context-based methods, we employ a simple and fast Mutual kNN410

Graph method [54] based on the HS similarity scores between all the shapes. This

method captures the manifold structure by defining a neighbourhood for each shape.

Our method, which achieves 99.21% bulls-eye score, outperforms most state-of-the-art

methods. It is important to mention that Donoser et al. [55] proposed a generic frame-

work for diffusion processes in the scope of retrieval applications which achieved a415

100% accuracy on MPEG7 dataset. However, as illustrated in Table 7, our perfor-

mance is very close to the 100% only using the Mutual kNN Graph method.

Animal2000 Database: As shown in Table 8, our method performs better than the

Shape Context [2] and Path Similarity [12] methods. However, there is still some

space to improve our method. In particular, the shape noise has a bad influence on the420
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Table 7: Bulls-eye score on the MPEG7 Dataset. HS denotes the hierarchical skeleton method.

Pairwise Matching Score Context-based Score

Shape Contexts [2] 76.51% INSC + CDM [56] 88.30%

Skeletal Context [3] 79.92% IDSC + LP [57] 91.00%

Optimized CSS [4] 81.12% SC + LP [57] 92.91%

Multiscale Rep. [5] 84.93% IDSC + LCDP [58] 93.32%

Shape LAneRouge [59] 85.25% SC + GM + Meta [60] 92.51%

Fixed Cor. [61] 85.40% IDSC + Mutual Graph [54] 93.40%

Inner Distance [6] 85.40% IDSC + PS + LDCP [62] 95.60%

Symbolic Rep. [63] 85.92% ASC + LDCP [64] 95.96%

Hier.Procrustes [7] 86.35% HF + LCDP [9] 96.45%

Triangle Area [65] 87.23% SC + IDSC + Co-T [53] 97.72%

Shape Tree [8] 87.70% SC + DDGM + Co-T [53] 97.45%

HF [9] 89.66% AIR [66] 93.67%

IP [67] 80.28% IP+HG [67] 96.43%

Path Similarity [12] 75.16% ASC + TN + TPG [68] 96.47%

HS 81.62% HS + Mutual Graph 99.21%

skeleton generation and pruning. This is why the retrieval score of Inner-Distance [6],

which is robust to shape noise, is higher than our method’s score. In addition, some

shapes in the same class are significantly different (Figure 13). Therefore, it is not

possible to group them into the same class only using shape distance methods. In

the future, we will use this dataset for evaluating the tasks with a supervised learning425

process, e.g. shape-based object classification using hierarchical skeletons.

Table 8: Retrieval score comparison on Animal2000 dataset.

Method Inner Dis. [6] Shape Context [2] Path Similarity [12] Our

Score 452.66 193.79 241.33 348.73
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5.4. Implementation and Computational Complexity

Here, we briefly describe all the implementation steps: first, we compute the ini-

tial skeletons with the method in [26]. After that, we generate hierarchical skeletons

using the skeleton pruning method in Section 3. Then, we match the hierarchical skele-430

tons by two potentials. For the singleton potential, we employ the skeleton matching

method in which Dijkstra’s shortest path algorithm [69] is employed to build the skele-

ton graph [31]. For the pairwise potential, skeleton lengths and skeleton point radius

are calculated to obtain the distance between two skeletons on different hierarchical

levels. Finally, the total costs between hierarchical skeletons are computed with the435

proposed method.

We now analyse the computational complexity of the proposed hierarchical skele-

ton generation and matching approaches. (1) For initial skeleton generation, the time

complexity is in the order of O(8n′), where n′ is the number of points in the pla-

nar shape D. This is because in [26], to determine whether a pixel point in D is a440

skeleton point, the corresponding nearest contour point for each of the 8 neighbour-

ing points is determined. (2) For hierarchical skeleton generation, the time complexity

is O(υ log υ), where υ is the number of the vertices on the original polygon. This is

because, as introduced in [12], the skeleton pruning based on DCE has a complex-

ity of O(υ log υ). (3) For hierarchical skeleton matching, we analyse the computa-445

tional complexity by different potentials. Assuming that k1 and k2 are the number of

all nodes (skeleton endpoints and junction points) in two single skeletons, the time

complexity for computing the singleton potential is O(k21k
2
2) [31]. As we employ

Tmax − Tmin + 1 hierarchical levels for the singleton matching, the total complex-

ity is O(Tmax − Tmin + 1)×O(k21k
2
2). Since Tmax − Tmin + 1 is constant, the total450

complexity for the singleton potential is O(k21k
2
2). For the pairwise potential, the time

for computing DT is O(n′) by the approach proposed in [70]. With DT , skeleton evo-

lution is computed by considering all possible pairs of skeletons on two different levels,

the time complexity isO(CTmax−Tmin+1
2 ) = O((Tmax−Tmin+1)(Tmax−Tmin)/2).

Considering these two parts, the pairwise potential runs inO(n′) +O(CTmax−Tmin+1
2 )455

time. Since (Tmax − Tmin + 1) and (Tmax − Tmin) are constant and small, the total

computational complexity of the pairwise potential is O(n′).
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Here we report the computation time based on Kimia216 dataset with the experi-

mental environment introduced above. On average, the shape resolution in this dataset

is 187 × 239. For initial skeleton generation, the mean time is 0.07 seconds on each460

shape. With an initial skeleton, the mean time for hierarchical skeleton generation is

0.97 seconds. Given two hierarchical skeletons with levels [3, 15], the mean matching

time is 11.29 seconds. Please notice that our code is not optimised, and its faster im-

plementation is possible by optimising loops, settings and programming language, etc.

Thus, there are still plenty of opportunities to reduce the running time.465

6. Conclusion and Future Work

In this paper, a novel object matching method based on hierarchical skeletons is

presented. The main idea is to reuse skeleton branches pruned in the skeleton pruning

process since they contain some fine-grained geometric and topological information of

original shapes. Based on this, we proposed a hierarchical skeleton as a shape repre-470

sentation to organise multiple skeletons obtained by the skeleton pruning process. We

also developed a matching method which considers similarities for both single skele-

tons and skeleton pairs (skeleton evolution) in a hierarchical skeleton. The experiments

on six datasets demonstrate that our method is significantly superior to most conven-

tional shape descriptors and the single skeleton-based methods. In the future, we will475

focus on optimising the singleton and pairwise potentials. For the singleton poten-

tial, we will check the distance metric learning [46, 71] approach to obtain the optimal

weights. Specifically, given a collection of dissimilarity values between skeletons from

each level among two hierarchical skeletons, appropriate projections can be extracted

by analysing the relations between dissimilarity values and their hierarchical levels.480

Essentially, these projects are used in such a way that the distances of similar-skeleton

and those of dissimilar-skeleton are preserved and enlarged, respectively. With these

projections, the optimal weight on each hierarchical level can be estimated. For the

pairwise potential, we will evaluate the strategy of matching skeletons on the levels

that are adjacent to the current level. In addition, we will also try to fuse some local485

features to improve the accuracy of object retrieval on fine-grained shapes.
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Appendix: In this appendix, we demonstrate how performance changes by varying

η. Specifically, we conduct shape retrieval on Kimia216 dataset [49] using different η

values. In order to eliminate the influence of other factors, the rest of parameters are

fixed. This experiment demonstrates a means of how a proper η value is obtained. As490

shown in Figure A1, η = 1.2 leads the best performance and we use this for the whole

experiments in Section 5.
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Figure A1: Transition of shape retrieval performances where the horizontal and vertical axes

represent η values and retrieval scores computed based on Eq. 9.
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